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With the development of new radiopharmaceutical therapies, quanti-
tative SPECT/CT has progressively emerged as a crucial tool for
dosimetry. One major obstacle of SPECT is its poor resolution, which
results in blurring of the activity distribution. Especially for small
objects, this so-called partial-volume effect limits the accuracy of
activity quantification. Numerous methods for partial-volume correc-
tion (PVC) have been proposed, but most methods have the disadvan-
tage of assuming a spatially invariant resolution of the imaging
system, which does not hold for SPECT. Furthermore, most methods
require a segmentation based on anatomic information.Methods:We
introduce DL-PVC, a methodology for PVC of 177Lu SPECT/CT imag-
ing using deep learning (DL). Training was based on a dataset of
10,000 random activity distributions placed in extended cardiac–torso
body phantoms. Realistic SPECT acquisitions were created using the
SIMIND Monte Carlo simulation program. SPECT reconstructions
without and with resolution modeling were performed using the
CASToR and STIR reconstruction software, respectively. The pairs of
ground-truth activity distributions and simulated SPECT images were
used for training various U-Nets. Quantitative analysis of the perfor-
mance of these U-Nets was based on metrics such as the structural
similarity index measure or normalized root-mean-square error, but
also on volume activity accuracy, a newmetric that describes the frac-
tion of voxels in which the determined activity concentration deviates
from the true activity concentration by less than a certain margin. On
the basis of this analysis, the optimal parameters for normalization,
input size, and network architecture were identified. Results: Our
simulation-based analysis revealed that DL-PVC (0.95/7.8%/35.8%
for structural similarity index measure/normalized root-mean-square
error/volume activity accuracy) outperforms SPECT without PVC
(0.89/10.4%/12.1%) and after iterative Yang PVC (0.94/8.6%/15.1%).
Additionally, we validated DL-PVC on 177Lu SPECT/CT measure-
ments of 3-dimensionally printed phantoms of different geometries.
Although DL-PVC showed activity recovery similar to that of the itera-
tive Yang method, no segmentation was required. In addition,
DL-PVC was able to correct other image artifacts such as Gibbs ring-
ing, making it clearly superior at the voxel level. Conclusion: In this
work, we demonstrate the added value of DL-PVC for quantitative
177Lu SPECT/CT. Our analysis validates the functionality of DL-PVC
and paves the way for future deployment on clinical image data.
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Quantitative SPECT/CT has become the method of choice to
spatially resolve activity distributions for the dosimetry of radio-
pharmaceutical therapies. One of the most important radionuclides
used today is 177Lu (1,2). Mainly because of its nonperfect collima-
tion and the resulting relatively poor spatial resolution (1–2 cm for
177Lu and medium-energy collimation (3)), 177Lu SPECT imaging
reaches its limitations for small structures such as lesions or small
organs (4). When activity quantification is based on volumes of inter-
est, poor spatial resolution leads to spatial allocation uncertainty,
which is referred to as partial-volume effect. For many imaging
modalities, the acquired activity distribution can be described in
good approximation by a convolution of the true activity distribution
with the point-spread function of the imaging system. Since this
approximation holds for PET, several techniques for partial-volume
correction (PVC) of PET have been proposed (5). However, the fun-
damental problem for transferring such methodology to SPECT is
that the poor spatial resolution of gamma cameras inevitably leads
to information loss. Hence, purely data-driven methods, such as reso-
lution modeling during reconstruction (resolution recovery [RR]) (6)
or postreconstruction deconvolution, will never result in partial-
volume effect–free activity concentration estimates. Accordingly,
some form of prior information has to be supplied, as performed, for
example, in the iterative Yang technique for postreconstruction
PVC (5), an enhancement of the Yang method (7). Iterative Yang
PVC (IY-PVC) uses prior knowledge about the spatial resolution to
fold the activity back into an estimated mask of active volume. For
practical implementation of PVC methods, a spatially invariant
point-spread function is often assumed for the sake of simplicity,
which approximately holds true for PET imaging. For SPECT,
however, this may introduce substantial errors, as the spatially vari-
ant SPECT resolution cannot be well approximated by a single
value (3). Furthermore, the exact distribution of radiopharmaceuti-
cals in the structures under investigation is typically unknown and
can be only roughly estimated from morphologic imaging such as
CT. When the active regions cannot be properly defined on the basis
of morphologic imaging, substantial errors may be introduced.
In recent years, convolutional neural networks have demonstrated

their tremendous potential in medical image processing. In the field
of SPECT imaging, convolutional neural networks have been used
for automated segmentation (8), CT-free attenuation correction (9),
acceleration of SPECT imaging (10,11), and denoising (12). In addi-
tion, deep learning (DL) techniques have recently been used for PVC
(13,14). Xie et al. (13) trained a neural network to perform IY-PVC
without the need for segmentation using uncorrected SPECT images
as input and images corrected with IY-PVC as target. As mentioned
above, however, the prior knowledge used to train the network can
introduce systematic errors. Li et al. (14) proposed a DL-based
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enhancement of dose calculations. More specifically, they used
[68Ga]Ga-DOTATATE PET/CT patient data as ground truth to
reduce the partial-volume effect in [177Lu]Lu-DOTATATE
SPECT/CT–based absorbed dose distributions. Although the
method was shown to enhance the dose maps, it works only under
the assumption that the distribution of radiopharmaceutical is compa-
rable despite the different radiopharmaceuticals scanned at different
measurement times after administration. In addition, differences in
ligand amount, affinity, and internalization have not yet been suffi-
ciently investigated, possibly leading to additional errors (15). Both
studies, although demonstrating the potential of DL for PVC, suffer,
like many other published implementations of DL for clinical appli-
cations, from small dataset sizes (28 and 14 patients in the work of
Xie et al. (13) and Li et al. (14), respectively) and lack of ground-
truth activity distributions for training.
In this work, we present DL-PVC, a methodology for PVC of

177Lu SPECT/CT imaging using DL trained on a large dataset of
10,000 pairs of random patient-shaped activity distributions and
associated SPECT images generated using Monte Carlo radiation
transport simulations. These pairs are used as input and target for a
convolutional neural network, trained to perform PVC without seg-
mentation. For performance evaluation, we investigated the impact
of different normalization (i.e., activity conservation) methods,
input matrix sizes, and network architectures on the performance of
DL-PVC. Subsequently, we compared our new methodology with
IY-PVC as a reference method and performed a validation based
on 177Lu SPECT/CT measurements of 3-dimensionally printed
phantoms of different geometries.

MATERIALS AND METHODS

Generation of a Dataset of Random Activity Distributions
A large database of 3-dimensional activity distributions of randomly

arranged random shapes and corresponding SPECT simulations was
created to train neural networks for PVC. A schematic overview of the
dataset generation is given in Figure 1. First, density maps and activity
masks were generated. The activity masks were then transformed into
inhomogeneous activity distributions with a patientlike activity range.
Next, simulations were performed in the SIMIND (SImulating Medi-
cal Imaging Nuclear Detectors) Monte Carlo simulation program (16),
using these masks to obtain SPECT projections. Last, iterative recon-
structions with RR (Software for Tomographic Image Reconstruction,
STIR (17)) and without RR (Customizable and Advanced Software
for Tomographic Reconstruction, CASToR (18)) were performed to
obtain SPECT images. The approach is based on previously described
work (11). A detailed description of the generation of the dataset is
given in the supplemental materials (supplemental materials are avail-
able at http://jnm.snmjournals.org). In addition, the complete dataset is
available at https://doi.org/10.5281/zenodo.8282567.

The most important features of the dataset are as follows:
Realistic Attenuation and Scattering Conditions. Extended

cardiac–torso (XCAT) phantoms (19) were used to achieve realistic

attenuation and scatter conditions. By varying
the size scaling of individual organs or areas,
250 variations of 16 patients (6 female, 9 male;
age, 18–76 y; body mass index, 18.6–38.0)
resulted in a total of 4,000 different density
maps. By defining 3 bed positions, we gener-
ated a total of 10,000 attenuation images (4,000
thoracic, 4,000 abdominal, and 2,000 head
images; matrix, 256; voxel size, 2.4 mm).
Patientlike Binary Activity Masks. Patient-

like binary activity masks (0, no activity; 1,
activity) were created by placing random shapes (minimal and maxi-
mum shape sizes of 4 and 100 voxels, respectively), created using
previously described methodology (11), inside the XCAT-based atten-
uation mask until a randomly selected, patient-representative target
volume was reached.
Nonuniform Activity Distributions. Each activity mask was mul-

tiplied voxelwise by a spatially contiguous, nonuniform pattern (11) to
create more complex, heterogeneous activity distributions. An exam-
ple of the resulting target datasets used to train the neural network is
shown in Figure 2.
Realistic Activity Distributions. To resemble 177Lu SPECT patient

acquisitions as closely as possible, the activity distributions were scaled
on the basis of the active volumes and total activities of 717 peritherapeu-
tic 177Lu SPECT/CT acquisitions (429 [177Lu]Lu-PSMA-I&T and 288
[177Lu]Lu-DOTATATE SPECT/CT examinations of 202 different
patients), which had been conducted at University Hospital W€urzburg
between January 2014 and June 2021 (waiver 20230207 04).

Monte Carlo–Based SPECT Simulations
For each of the 10,000 random activity distributions, a set of realis-

tic SPECT projections was generated by SIMIND Monte Carlo simu-
lations (16). The simulations were set up to replicate a 177Lu SPECT
acquisition on our Siemens Intevo Bold SPECT/CT system (9.5-mm
crystal; medium-energy low-penetration collimator; 9% energy resolu-
tion; 120 projections of 30 s each; noncircular orbit; matrix, 128; pixel
size, 4.79 mm; 20% main energy window at 208 keV; and 2 adjacent
10% scatter windows). As described previously (11), Poisson noise
was added to the simulated (noise-free) projections to obtain realistic
(noisy) projections for the given activities and acquisition parameters.

FIGURE 1. Schematic overview of dataset generation used in this study. SIMIND 5 Simulating
Medical Imaging Nuclear Detectors. STIR5 Software for Tomographic Image Reconstruction; CAS-
ToR5 Customizable and Advanced Software for Tomographic Reconstruction.

FIGURE 2. Example target dataset as used for neural network. XCAT
phantom is shown in gray scale, whereas random activity distribution is
shown in color map. At top are axial sections, and at bottom are coronal
sections. From left to right, 3 bed positions are shown: head, thorax, and
abdomen. Camera orbits are indicated as blue dotted lines.
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SPECT Reconstructions
SPECT reconstructions (voxel size, 4.8 mm) were performed for all

2 3 10,000 projection sets (noise-free and noisy) using 2 different
reconstructions: CASToR, an ordered-subset expectation maximization
reconstruction (10 iterations, 2 subsets, attenuation correction, scatter
correction) without RR (18), and STIR, an ordered-subset expectation
maximization reconstruction (6 iterations, 6 subsets, attenuation correc-
tion, scatter correction) with RR (17). Accordingly, 4 different SPECT
datasets were available for training and analysis of the presented
approach: CASToR (noRR) or STIR (RR) performed with noise-free
(nf) or noisy (n) projections (noRR_nf/noRR_n and RR_nf/RR_n,
respectively).

Evaluation of Activity Conservation
An important criterion for any PVC is that the correction preserves

the total activity. Before the U-Net was applied, the input SPECT
images were normalized by their maximum activity concentration to
an interval of [0,1]. In this study, we investigated 2 different
approaches for scaling the output of the proposed PVC. The first was
rescaling the output of DL-PVC with the maximum activity concentra-
tion of the input SPECT image, and the second was normalization of
the sum of all voxel values of the output of DL-PVC to the total activ-
ity of the input SPECT image.

Evaluation of Input Matrix Size
In our work, we investigated 2 kernel sizes to which the PVC

method was applied. In the first, DL-PVC is directly applied to the
entire field of view (FOV), in which case the entire SPECT image
(matrix size, 128 3 128 3 128) and the entire ground-truth activity
distribution serve as input and target, respectively. In the second,
DL-PVC is applied to smaller patches (cube-shaped image sections
with an edge length of 32 voxels), which are subsequently reas-
sembled (more details can be found in the supplemental materials).

Evaluation of U-Net Architecture
A 3-dimensional U-shaped convolutional neural network (U-Net)

(20) based on the fastMRI architecture (21) and implemented using
the PyTorch library (22) with Adam optimizer (23) was used to per-
form the PVC. A more detailed explanation of the architecture is given
in the supplemental materials. In addition to the standard U-Net archi-
tecture, 4 other architectures were tested: R2U-Net by Alom et al.
(24); AttU-Net by Oktay et al. (25); R2AttU-Net, a combination of
both methods (26); and U-Net11, a nested U-Net proposed by Zhou
et al. (27). The performance of these 5 network architectures was com-
pared on the basis of the RR_n and noRR_n datasets. PVC was per-
formed on the entire FOV, preserving the total activity.

Evaluation Criteria for PVC Performance
Several evaluation metrics were used to evaluate the quality of the

different PVC methods. Their calculation was restricted to a masked
region within each test dataset in which ground-truth activity was pre-
sent. Besides structural similarity index measure (SSIM) (28) and nor-
malized root-mean-square error (NRMSE), a volume activity accuracy
(VAA) was defined. It indicates the proportion of voxels in which the
relative deviation in activity concentration was less than a (fixed at
5%). More information is given in the supplemental materials. In addi-
tion, the deviation between total activity before and after PVC was
calculated as percentage difference. Because not all evaluation metrics
were normally distributed, paired Wilcoxon tests with a significance
level of 1% were chosen for the statistical analysis.

Comparison with Iterative Yang Technique
To compare the proposed DL-PVC methodology with an already-

established PVC method, IY-PVC (5) was applied to all SPECT recon-
structions. First, a matched filter analysis (3) was used to determine the

spatial resolution for STIR (8.75 mm; applies to RR_n, RR_nf) and for
CASToR (21.35 mm; applies to noRR_n, noRR_nf). Subsequently, 10
iterations of IY-PVC were performed using the PETPVC toolbox (29)
with spatial resolution and ground-truth activity mask as input.

Investigation of Minimum Feature Size
To determine the minimum feature size that DL-PVC can still

resolve, further simulations based on the XCAT phantom dataset were
performed. For this purpose, multiple SPECT simulations of random
activity distributions were performed, in which a cube with an edge
length of 1–10 voxels (increment, 1 voxel) was introduced centrally
into the activity distribution. Recovery coefficients (RCs) were calcu-
lated to determine how well DL-PVC recovers the activity in the
different-sized cubes. More detail on the simulations and the calcula-
tion of the RCs is given in the supplemental materials.

Activity Concentration–Voxel Histograms
To illustrate differences in the distribution of activity concentrations

for the SPECT simulations without PVC, after IY-PVC, and after
DL-PVC, activity concentration–voxel histograms (proportion of vox-
els containing a given relative activity concentration plotted against
the respective relative activity concentration) were created. More
details can be found in the supplemental materials.

Phantom Measurement
To justify application of DL-PVC in a clinical context, we validated

the methodology on increasingly patient-realistic 177Lu SPECT/CT phan-
tom measurements. For this purpose, a previously published series of
177Lu SPECT/CT measurements of 3 self-designed 3-dimensional phan-
toms (sphere, ellipsoid, and renal cortex geometry, all with the same fill-
ing volume of 100 mL) was used (30). In addition, a 3-dimensionally
printed 2-organ phantom (International Commission on Radiological Pro-
tection publication 110 [ICRP110]–based 2-compartment kidney and
spleen) was analyzed to evaluate DL-PVC on a phantom that is more
representative of patient data. These data had been acquired at our institu-
tion as part of the Europe-wide MRTDosimetry comparison exercise for
quantitative 177Lu SPECT/CT imaging (31). The acquisition parameters
had been the same as the parameters chosen for the Monte Carlo simula-
tions. On the basis of these 4 measured projection datasets, SPECT
reconstructions were performed with CASToR and STIR with the same
parameters as for the simulated SPECT projections. For analysis, all
SPECT images were interpolated to CT resolution (matrix, 512; voxel
size, 0.98 mm) using trilinear interpolation. These were compared with
the ground truth created by multiplying the masks used for phantom fab-
rication by the nominal activity concentrations (1.08 6 0.03 MBq/mL
for sphere/ellipsoid/cortex, 1.44 6 0.04 MBq/mL for spleen/cortex, and
0.47 6 0.01 MBq/mL for medulla of the ICRP110-based phantom), the
determination of which was previously described (30).

RESULTS

Optimal Selection of Activity Conservation, Input Matrix Size,
U-Net Architecture, and Resolution Modeling
In light of the investigations regarding activity conservation,

input matrix size, U-Net architecture (20,24–27), and the applica-
tion of RR, an optimal configuration and reconstruction method,
DL-PVC, was determined for further analysis. It comprises the fol-
lowing components, the selection of which, including statistical
tests based on the evaluation metrics, are described in detail in the
supplemental materials: SPECT reconstruction with RR (RR_nf or
RR_n); activity conservation based on the total activity of the
uncorrected SPECT; input matrix size: direct application of PVC
to the entire FOV; and R2U-Net network architecture (24).

982 THE JOURNAL OF NUCLEAR MEDICINE � Vol. 65 � No. 6 � June 2024



Comparison with Iterative Yang Technique as
Reference Method
Table 1 and Figure 3 show a numeric and visual comparison of

the evaluation metrics for SPECT without PVC, after DL-PVC,
and after IY-PVC. In both cases, DL-PVC demonstrates signifi-
cantly superior evaluation metrics. In addition, Figure 4 gives a
visual impression of the different image qualities. Visually, activ-
ity distributions corrected with DL-PVC closely resemble the
ground-truth activity distribution, which is illustrated by cross sec-
tions. A considerable increase in the number of cyan voxels in the
VAA maps indicates that the activity concentration after DL-PVC
better matches the true activity concentration. Furthermore, the
true activity concentration is restored, especially in voxels located
at the center of larger shapes. However, deviations can still be
seen at the edges of larger objects or for smaller objects.

Investigation of Minimum Feature Size
Figure 5 shows the results concerning the minimal feature size

that DL-PVC can resolve. Without PVC (green) and after IY-PVC
(red), the RCs increase continuously over all cube edge lengths
investigated. In contrast, the RCs for DL-PVC are zero at edge

TABLE 1
Mean Evaluation Metrics for Both SPECT Datasets with RR Without PVC, After IY-PVC, and After DL-PVC over

All 500 Test Activity Distributions

SPECT reconstruction PVC method SSIM NRMSE (%) VAA (%) AD (%)

RR_nf None 0.899 (0.019) 9.98 (1.32) 13.57 (4.14) 0.28 (2.00)

IY-PVC 0.945 (0.009) 8.07 (2.33) 17.05 (4.03) 4.62 (6.16)

DL-PVC 0.971 (0.007) 5.74 (0.89) 43.30 (8.79) 0.28 (2.00)

RR_n None 0.890 (0.022) 10.44 (1.40) 12.10 (3.18) 0.33 (2.06)

IY-PVC 0.936 (0.013) 8.58 (1.21) 15.06 (3.27) 6.36 (4.36)

DL-PVC 0.947 (0.015) 7.75 (1.33) 35.79 (10.06) 0.33 (2.06)

SSIM 5 structural similarity index measure; NRMSE 5 normalized root-mean-square error; VAA = voxel activity accuracy; AD 5

activity deviation.
Data in parentheses are SDs. Note that activity deviation is same without PVC and after DL-PVC because of activity conservation approach.

FIGURE 3. Comparison of different PVC approaches. Depicted are violin
plots of evaluation metrics for SSIM (A), NRMSE (B), VAA (C), and activity
deviation (D) for reconstructions without PVC, after IY-PVC, and after
DL-PVC. Darker shades represent reconstructions without RR, and
brighter shades represent reconstructions with RR. Inside violins, solid
lines represent median, and dashed lines represent upper and lower quar-
tiles. Note that activity deviation is same without PVC and after DL-PVC
because of activity conservation in DL-PVC. For SSIM and VAA, higher
values correspond to better performance, whereas for NRMSE and activ-
ity deviation, better performance is indicated by values closer to 0%.
AD 5 activity deviation; NRMSE 5 normalized root-mean-square error;
SSIM5 structural similarity index measure; VAA5 voxel activity accuracy.

FIGURE 4. Visual performance analysis of different PVC approaches. (A)
Top: axial slice of example activity distribution from test dataset recon-
structed with RR without PVC, after IY-PVC, and after DL-PVC. White num-
bers correspond to SSIM values with respect to ground truth. Bottom: VAA
maps of corresponding SPECT reconstructions with respect to ground
truth. Red represents deviation in voxel’s activity concentration by more
than or equal to a55%; cyan represents deviation smaller than a. Black
numbers indicate VAA between SPECT reconstruction and ground truth. (B)
Cross-sections indicated by cyan lines in SPECT reconstructions in A.
SSIM5 structural similarity index measure; VAA5 voxel activity accuracy.
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lengths of 1 and 2 voxels (4.8 and 9.6mm), increase rapidly from
an edge length of 3 voxels (14.4mm), and then continue to
increase only slowly. Although DL-PVC does not perform ade-
quately for structures with an edge length of less than 3 voxels
(14.4mm), it outperforms no PVC or IY-PVC for all cubes above
this resolution limit.

Activity Concentration–Voxel Histograms
Figure 6 shows the activity concentration–volume histograms for

the test dataset. For a perfect PVC, the histograms should closely
resemble the ground-truth activity distribution. A close similarity
between ground truth (blue) and DL-PVC (orange) can be observed
at higher relative activity concentrations, starting at approximately
0.25. In general, substantial deviations can be seen for lower con-
centrations. Although, in the ground-truth activity distribution, a
high proportion of voxels is associated with small concentrations
between 0.05 and 0.25, the DL-PVC distribution has far fewer vox-
els in this concentration range. In contrast, there is a high fraction
of voxels for DL-PVC in which no activity is present in compari-
son to the ground-truth activity distribution. This is due to the
masking of the voxels displayed in the histogram based on the

ground truth. The histograms of the
SPECT reconstructions without PVC
(green) and after IY-PVC (red) both show
a distinct shift toward lower concentra-
tions, indicating that DL-PVC outperforms
IY-PVC on the voxel level.

Phantom Measurement
Table 2 shows the evaluation metrics for

the phantom measurements. The results for
the ellipsoid phantom are given in the
supplemental materials, as they are quite
similar to the sphere. For all 3 phantoms,
the highest SSIM and lowest NRMSE
were achieved using IY-PVC. Although
DL-PVC results in worse SSIM and
NRMSE, there is still a clear improvement.
In contrast, the highest VAA was obtained
using DL-PVC for all 3 phantoms.
Although the best RCs for the sphere were
achieved with DL-PVC, the highest recov-
eries for the kidney cortex and ICRP110
kidney/spleen were achieved by IY-PVC.

Figure 7 shows the results of the phantom measurements. In the
activity distributions (Fig. 7A) and the corresponding cross sections
(Fig. 7B), a good visual agreement between the true activity distri-
bution (blue) and the SPECT reconstruction after DL-PVC (orange)
can be observed for sphere and ellipsoid (supplemental materials)
geometry. For the reconstruction without PVC (green) and with
IY-PVC (red), an overestimation of the activity at the edges and
underestimation centrally can be observed for the sphere phantom.
This artifact, known as Gibbs ringing, disappears after the applica-
tion of DL-PVC. The VAA maps (Fig. 7A) underline this good
agreement. Similar to Figure 4, the voxels at the edge of the object
deviate from the true activity distribution to a greater extent. For
the kidney cortex, significant deviations are observed between the
DL-PVC SPECT acquisition and the true activity distribution. The
image appears blurred, and the narrow structure on the right could
not be restored. Hardly any cyan voxels are visible in the VAA
map, indicating that the true activity distribution was poorly repro-
duced numerically. However, IY-PVC also does not provide satis-
factory results for this phantom geometry. For the ICRP110-based
kidney/spleen phantom, DL-PVC cannot correctly predict the activ-
ity difference between the 2 compartments comprising the kidney.
On the other hand, the voxelwise activity quantification in the
spleen is significantly better than that for IY-PVC.
The activity concentration–voxel histograms (Fig. 7C) show

that for the sphere phantom and the ICRP110 kidney/spleen phan-
tom, more voxels have the true activity concentration after
DL-PVC than after IY-PVC. For the cortex phantom, the distribu-
tion of activity concentrations could at least be brought closer
toward the true activity concentration.

DISCUSSION

In this work, we introduce a methodology for PVC of 177Lu
SPECT/CT imaging using DL. Using a dataset consisting of ran-
dom activity distributions and the corresponding SPECT simula-
tions, a neural network was trained to estimate ground-truth
activity distributions from SPECT images.
From simulated data and 177Lu phantom measurements, we

demonstrated the superiority of the presented DL-PVC method

FIGURE 5. Investigation of minimum feature size. (Top) axial slices of reconstructed SPECT simula-
tion without PVC, after IY-PVC, and after DL-PVC. (Center) RC as function of cube edge length.
Dashed blue line corresponds to cube edge length in ground-truth image (bottom left).

FIGURE 6. Activity concentration–volume histograms for test dataset.
Depicted are ground-truth activity distribution and corresponding SPECT
reconstructions (RR_n) without PVC, after IY-PVC, and after DL-PVC. For
better visualization, y-axis has been truncated at 4.5%; thus, high percentage
of 7.2% of voxels at relative concentration of 0 for DL-PVC is not shown
in plot.
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over IY-PVC, an established method for PVC (5). This is despite
the advantage that DL-PVC does not require any prior knowledge
such as the spatial resolution of the reconstruction or a mask with the
contours of the active volume. For spherelike geometries, DL-PVC
achieved a recovery of the activity comparable to IY-PVC. However,
Gibbs artifacts, which are typical for SPECT reconstructions with RR,

and which were still clearly visible even after IY-PVC, could be effi-
ciently corrected by DL-PVC. As a result, DL-PVC is clearly superior
to IY-PVC in accurately restoring the true activity concentration at
the voxel level, as is also reflected in the VAA. These artifacts could
also be the reason why direct application of PVC to the entire FOV
leads to a higher VAA than application of DL-PVC to smaller
patches. For large objects, application of DL-PVC to smaller patches
can no longer capture the entire object because of its 323 32 3 32
voxel kernel. Therefore, the neural network may be less capable of
correcting Gibbs artifacts for larger objects, resulting in a smaller
VAA. In contrast, IY-PVC proved to be superior in the case of the
kidney cortex geometry, as could be attributed to its small features,
some of which fall below the minimum resolvable feature size of 3
voxels (14.37mm) determined for DL-PVC. However, only the cube
geometry was used in the resolution analysis of the different PVC
methods. Therefore, these conclusions may not apply in the same
way to nonuniformly shaped objects. Another important aspect when
comparing DL-PVC and IY-PVC is that the activity masks for our
IY-PVC analysis were based on the ground-truth activity distributions,
an approach that is not feasible under real clinical conditions. This
represents a clear bias in favor of IY-PVC in the context of our quan-
titative analysis and may explain the better performance of IY-PVC
for the cortex phantom, as the complex structure was precisely speci-
fied there in the form of the segmentation mask. For a fairer compari-
son, activity masks could additionally be used as prior knowledge to
improve DL-PVC, which could be the subject of future research.
There are also other potential ways to further improve the per-

formance of DL-PVC. A notable limitation of the method in its
current implementation is the relatively coarse voxel size of
4.8mm. A subdivision of the FOV captured by the detectors into
smaller pixels—and thus voxels—would leave more degrees of
freedom for the neural network, especially in the transition regions
between activity and background. This could in turn improve the
performance of DL-PVC, especially for objects with small feature
sizes such as the cortex phantom. On the other hand, a smaller
voxel size will lead to a reduced signal-to-noise ratio per voxel,

TABLE 2
Evaluation Metrics of Phantom Measurements for Reconstruction with RR (RR_n) Without PVC,

After IY-PVC, and After DL-PVC

Phantom PVC method SSIM NRMSE (%) VAA (%) RC

Sphere None 0.855 18.68 19.64 0.729

IY-PVC 0.940 11.90 24.32 0.841

DL-PVC 0.929 14.16 65.50 0.894

ICRP110 kidney None 0.686 21.70 1.19 0.583

IY-PVC 0.833 14.92 1.40 0.695

DL-PVC 0.770 19.09 3.23 0.653

ICRP110 spleen None 0.847 18.37 12.49 0.729

IY-PVC 0.953 10.33 19.79 0.877

DL-PVC 0.889 16.29 28.40 0.820

Cortex None 0.389 27.52 0.00 0.481

IY-PVC 0.737 15.88 3.53 0.802

DL-PVC 0.709 21.06 10.60 0.769

SSIM 5 structural similarity index measure; NRMSE 5 normalized root-mean-square error; VAA 5 voxel activity accuracy;
RC 5 recovery coefficient.

FIGURE 7. Phantom measurement. (A) SPECT reconstructions (RR_n)
of 100-mL sphere phantom (axial slice), ICRP110-based kidney/spleen
phantom (sagittal slice), and kidney cortex phantom (axial slice) without
PVC, after IY-PVC, and after DL-PVC with corresponding VAA maps.
Magenta arrow for cortex phantom indicates structure that could not be
restored by DL-PVC. (B) Cross-sections indicated by cyan lines in SPECT
reconstructions for ground-truth activity distributions and for SPECT with-
out PVC, after IY-PVC, and after DL-PVC. (C) Corresponding activity con-
centration–voxel histograms; VAA5 voxel activity accuracy.
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which could negatively impact the performance of DL-PVC. Because
of the extensive computational demands of higher-resolution simula-
tions and the limited memory capacity of the graphics processing unit
used for training the neural network, we opted for the coarser resolu-
tion (4.8mm) in this work. In future research, DL-PVC could be
adapted for smaller voxel sizes such as 2.4mm.
Although XCAT phantoms realistically describe the attenuation in a

patient, there are still clear differences between the random activity dis-
tributions used for training DL-PVC and those observed in SPECT/CT
measurements in patients undergoing radiopharmaceutical therapy. To
close this gap and enable the method to be applied to clinical patient
data, PET/CT or SPECT/CT patient images could be used to generate
synthetic activity distributions. In the case of SPECT, however, the
strongly pronounced partial-volume effect would have to be consid-
ered. Another limitation of the dataset used for training DL-PVC is
that the variation of activity concentration within the random shapes is
of relatively low frequency, thereby not demonstrating any sharp
edges. These missing examples during training could explain why the
performance of DL-PVC for the 2-compartment kidney of the
ICRP110-based phantom is not yet optimal.
Our investigations have demonstrated that DL-PVC performs sig-

nificantly better for noise-free (RR_nf) than for noisy (RR_n) datasets.
Therefore, another avenue for improving DL-PVC would be to apply
the method to denoised SPECT reconstructions. However, obtaining
virtually noise-free projections in SPECT measurements is not realis-
tic in a clinical setting, particularly for acquisitions a few days after
administration of the radiopharmaceutical. An alternative approach
would be to first denoise the SPECT data (e.g., using a second neural
network) and subsequently apply DL-PVC.
At last, DL-PVC might be enhanced by further optimizing the

network architecture. Although we have benchmarked various
end-to-end U-Net architectures in this study, the exploration of
novel convolutional neural network architectures represents a
potential pathway to further improve the performance of DL-PVC.
Despite the investigation of many aspects within the scope of

this work, there are still several open questions. For example, the
choice of parameters for reconstructing the input data for our neural
network needs further investigation. In our study, fixed numbers of
iterations and subsets were used for both reconstructions (CASToR,
10 iterations and 2 subsets; STIR, 6 iterations and 6 subsets). How-
ever, the impact of these parameters on SPECT-based activity dis-
tributions is well known. Higher numbers of updates (iterations 3
subsets) have been shown to enhance recovery substantially,
though at the expense of increased image noise (3). To address this
issue, future studies could focus on assessing the performance of
DL-PVC as a function of the number of iterations.
Another important aspect is the total activity in the FOV of the

SPECT image. We determined the total activity by analyzing patients
who received [177Lu]Lu-PSMA-I&T or [177Lu]Lu-DOTATATE
radiopharmaceutical therapy at our institution. The latest acquisitions
had been performed 4 d after injection of the radiopharmaceutical.
When SPECT/CT is performed at even later time points (32), it
needs to be investigated how such low activities—and thus low
signal-to-noise ratios—affect the performance of DL-PVC.
Finally, an important investigation before the clinical application

of DL-PVC in radiopharmaceutical therapy dosimetry is its impact
on dosimetry calculations. Only by dosimetric evaluations on vari-
ous organs and tumors using different PVC methods could one see
what improvements DL-PVC can offer not only in terms of simpli-
fication of dosimetry calculation but also in terms of its accuracy.

CONCLUSION

In this study, a DL-PVC methodology for PVC of 177Lu
SPECT/CT imaging based on DL was introduced. Training of
convolutional neural networks was based on a large dataset of
Monte Carlo–simulated SPECT images of random activity distri-
butions placed in different XCAT phantoms. From our investiga-
tions, we identified the optimal settings for DL-PVC in terms of
activity conservation, input matrix size, and network architecture.
Our analysis revealed that DL-PVC outperforms established
PVC methods, such as IY-PVC, in restoring the true activity distribu-
tion without requiring resolution estimation or activity masking. Fur-
thermore, tests on 177Lu SPECT/CT measurements of 3-dimensionally
printed phantoms of different geometries showed that although
DL-PVC and IY-PVC achieve equivalent levels of activity recovery,
DL-PVC can also correct other image artifacts such as Gibbs ringing
and is therefore clearly superior at the voxel level. In summary, we
have demonstrated that DL offers a wide range of improvement oppor-
tunities for PVC of quantitative 177Lu SPECT/CT imaging. This is a
first step toward a much-needed routine use of comparable techniques
for dosimetry of radiopharmaceutical therapies.
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KEY POINTS

QUESTION: Is it possible to perform PVC for 177Lu SPECT/CT
using DL?

PERTINENT FINDINGS: From a database of 10,000 pairs of
random activity distributions and realistic associated SPECT
simulations, a U-shaped convolutional neural network was trained
to perform PVC on 177Lu SPECT images. SPECT images
corrected with DL-PVC were found to resemble the underlying
activity distribution much more closely than reconstructions
without PVC or after application of IY-PVC.

IMPLICATIONS FOR PATIENT CARE: The potential of DL-PVC
was demonstrated on 177Lu SPECT/CT measurements of
anthropomorphic phantoms, paving the way for clinical
application. In the future, DL-based PVC could be an important
tool to perform accurate patient-specific and voxel-based
dosimetry for radiopharmaceutical therapies.
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