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An important need exists for strategies to perform rigorous objective clini-
cal-task-based evaluation of artificial intelligence (Al) algorithms for
nuclear medicine. To address this need, we propose a 4-class framework
to evaluate Al algorithms for promise, technical task-specific efficacy,
clinical decision making, and postdeployment efficacy. We provide best
practices to evaluate Al algorithms for each of these classes. Each class
of evaluation yields a claim that provides a descriptive performance of
the Al algorithm. Key best practices are tabulated as the RELAINCE
(Recommendations for Evaluation of Al for NuClear medicinE) guide-
lines. The report was prepared by the Society of Nuclear Medicine and
Molecular Imaging Al Task Force Evaluation team, which consisted of
nuclear-medicine physicians, physicists, computational imaging scien-
tists, and representatives from industry and regulatory agencies.
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I. INTRODUCTION

Artiﬁcial intelligence (Al)-based algorithms are showing tremen-
dous promise across multiple aspects of nuclear medicine, including
image acquisition, reconstruction, postprocessing, segmentation, diag-
nostics, and prognostics. Translating this promise to clinical reality
requires rigorous evaluations of these algorithms. Insufficient evalua-
tion of Al algorithms may have multiple adverse consequences,
including reducing credibility of research findings, misdirection of
future research, and, most importantly, yielding tools that are useless
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or even harmful to patients (/). The goal of this report is to provide
best practices to evaluate Al algorithms developed for different parts of
the imaging pipeline ranging from image acquisition to postprocessing
to clinical decision making in the context of nuclear medicine. We pro-
vide these practices in the context of evaluating Al algorithms that use
artificial neural network—based architectures, including deep learning.
However, many principles are broadly applicable to other machine-
learning and physics-based algorithms. In the rest of the report, Al
algorithms refer to those that use artificial neural networks.

Evaluation has a well-established and essential role in the transla-
tion of any imaging technology but is even more critical for Al algo-
rithms due to their working principles. Al algorithms are typically not
programmed with user-defined rules, but instead learn rules via analy-
sis of training data. These rules are often not explicit and thus not
easily interpretable, leading to unpredictability in output. This leads to
multiple unique challenges. First, Al algorithms may yield inaccurate
results that may adversely impact performance on clinical tasks. For
example, Al-based reconstruction may introduce spurious lesions (2),
Al-based denoising may remove lesions (3), and Al-based lesion seg-
mentation may incorrectly identify healthy tissue as malignancies (4).
Evaluations are thus crucial to assess the algorithm’s clinical utility. A
second challenge is that of generalizability. Al algorithms are often
complicated models with many tunable parameters. These algorithms
may perform well on training data, but may not generalize to new
data, such as from a different institution (35), population groups (6,7),
or scanners (8). Possible reasons for this include that the algorithm
uses data features that correlate with the target outcome only within
training data, or that the training data does not sufficiently represent
the patient population. Evaluations are needed to assess the generaliz-
ability of these algorithms. A third challenge is data drift during clini-
cal deployment. When using Al systems clinically, over time, the
input-data distribution may drift from that of the training data due to
changes in patient demographics, hardware, acquisition and analysis
protocols (9). Evaluation in postdeployment settings can help identify
this data drift. Rigorous evaluation of Al algorithms is also necessary
because Al is being explored to support decisions in high-risk applica-
tions, such as guiding treatment.
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In summary, there is an important need for carefully defined strat-
egies to evaluate Al algorithms, and such strategies should be able to
address the unique challenges associated with Al techniques. To
address this need, the Society of Nuclear Medicine and Molecular
Imaging put together an Evaluation team within the Al Task Force.
The team consisted of computational imaging scientists, nuclear
medicine physicians, nuclear medicine physicists, biostatisticians,
and representatives from industry and regulatory agencies. The team
was tasked with defining best practices for evaluating Al algorithms
for nuclear medicine imaging. This report has been prepared by this
team.

In medical imaging, images are acquired for specific clinical
tasks. Thus, Al algorithms developed for the various parts of the
imaging pipeline, including acquisition, reconstruction, postpro-
cessing, and segmentation, should be evaluated on the basis on
how well they assist in the clinical tasks. As described later, these
tasks can be broadly classified into 3 categories: classification,
quantification, or a combination of both (/0,11). An oncologic
PET image may be acquired for the task of tumor-stage classifica-
tion or for quantification of tracer uptake in tumor. However, cur-
rent Al-algorithm evaluation strategies are often task agnostic. For
example, Al algorithms for reconstruction and postprocessing are
often evaluated by measuring image fidelity to a reference stan-
dard using figures of merit (FoMs) such as root mean square error.
Similarly, Al-based segmentation algorithms are evaluated using
FoMs such as Dice scores. However, studies, including recent
ones, show that these evaluation strategies may not correlate with
clinical-task performance and task-based evaluations may be
needed (2,3,11-15). One study observed that evaluation of a
reconstruction algorithm for whole-body FDG PET using fidelity-
based FoMs indicated excellent performance, but on the lesion-
detection task, the algorithm was yielding both false-negatives and
-positives due to blurring and pseudo-low uptake patterns, respec-
tively (2). Similarly, an Al-based denoising method for cardiac
SPECT studied using realistic simulations seemed to yield excel-
lent performance as evaluated using fidelity-based FoMs. How-
ever, on the task of detecting perfusion defects, no performance
improvement was observed compared with noisy images (3). Such

NOTEWORTHY

W Al algorithms should be evaluated on clinical tasks.

W Al algorithm evaluations should yield a claim that provides a
clear and descriptive characterization of the performance of
the Al algorithm on a clinical task. The claim should include a
definition of the clinical task, patient population for whom the
task is defined, definition of the imaging process, procedure to
extract task-specific information, and figure of merit to quantify
task performance.

B We propose a 4-class framework that evaluates Al algorithms
for nuclear-medicine imaging on clinical tasks and yields a
claim. The 4 classes in the framework include promise, techni-
cal, clinical, and postdeployment evaluation of Al algorithms.

B We provide best practices for determining study type, data
collection, defining reference standard, and choosing figures of
merit for each class of evaluation.

B Key recommendations are summarized as the RELAINCE
(Recommendations for Evaluation of Al for NuClear medicinE)
guidelines.

findings show that task-agnostic approaches to evaluate Al algo-
rithms have crucial limitations in quantifying performance on clin-
ical tasks. Thus, evaluation strategies that specifically measure
performance on clinical tasks are needed.

Evaluation studies should also quantitatively describe the gener-
alizability of the Al algorithm to different population groups and
to different portions of the imaging pipeline, including scanners,
acquisition, and analysis protocols. Finally, evaluations should
yield quantitative measures of performance to enable clear compar-
ison with standard of care and other methods and provide guidance
for clinical utility. To incorporate these needs, we recommend that
an Al-algorithm evaluation strategy should always produce a claim
consisting of the following components (Fig. 1):

e A clear definition of the task

e Patient population(s) for whom the task is defined

e Definition of the imaging process (acquisition, reconstruction,
and analysis protocols)

e Process to extract task-specific information

e FoM to quantify task performance, including process to define
reference standard

We describe each component in the next section. We next pro-
pose an evaluation framework that categorizes the evaluation strat-
egies into 4 classes: proof of concept, technical, clinical and
postdeployment evaluation. This framework will serve as a guide
to conduct the evaluation study that provides evidence to support
the intended claim. We also provide best practices for conducting
evaluations for each class. Key best practices are summarized as
the RELAINCE (Recommendations for EvalLuation of AI for
NuClear medicinE) guidelines.

In this report, the terms “training,” “validation,” and “testing” will
denote the building of a model on a specific dataset, the tuning/opti-
mization of the model parameters, and the evaluation of the optimized
model, respectively. The focus of this report is purely on testing/eval-
uation of an already developed Al algorithm. Best practices for devel-
opment of Al algorithms are described in a companion paper (6).
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Il. COMPONENTS OF THE CLAIM

The claim provides a clear and descriptive characterization of
the performance of an Al algorithm based on how well it assists in
the clinical task. The components of a claim are shown in Figure 1
and described below.

11.1. Definition of the Clinical Task

In this paper, the term “task” refers to the clinical goal for which
the image was acquired. Broadly, in nuclear medicine, tasks can be
grouped into 3 categories: classification (including lesion detection),
quantification, or joint classification and quantification. A classifica-
tion task is defined as one where the patient image is used to classify
the patient into one of several categories. For example, identifying if
cancer is present or absent or the cancer stage from an oncologic
PET image. Similarly, predicting whether a patient would/would not
respond to therapy would be a classification task. A quantification
task is defined as one where some numeric or statistical feature is
estimated from the patient image. Examples include quantifying
SUV, metabolic tumor volume (MTV), intralesion heterogeneity, or
kinetic parameters from oncologic PET images.

11.2. Patient Population for Whom the Task Is Defined
The performance of an imaging algorithm can be affected by
the physical and statistical properties of the imaged patient
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FIGURE 1. The components of a claim. (Scanner image: iStock photo.)

population. Results for one population may not necessarily trans-
late to others (5,7). Thus, the patient population should be defined
in the claim. This includes aspects such as sex, ethnicity, age
group, geographic location, disease stage, social determinants
of health, and other disease and application-relevant biologic
variables.

11.3. Definition of Imaging Process

The imaging system, acquisition protocol, and reconstruction
and analysis parameters may affect task performance. For exam-
ple, an Al algorithm evaluated for a high-resolution PET system
may rely on high-frequency features captured by this system and
thus not apply to low-resolution systems (&). Depending on the
algorithm, specific acquisition protocol parameters may need to be
specified or the requirement to comply with a certain accreditation
standard, such as SNMMI-Clinical Trial Network, RSNA QIBA
profile, and the EARL standards, may need to be stated. For exam-
ple, an Al-based denoising algorithm for ordered-subsets-expecta-
tion-maximization (OSEM)-based reconstructed images may not
apply to images reconstructed using filtered backprojection or
even for a different number of OSEM iterations since noise prop-
erties change with iteration numbers. Thus, depending on the
application, the claim should specify the imaging protocol. Fur-
ther, if the algorithm was evaluated across multiple scanners, or
with multiple protocols, that should be specified.

11.4. Process to Extract Task-Specific Information

Task-based evaluation of an imaging algorithm requires a strategy
to extract task-specific information from the images. For classifica-
tion tasks, a typical strategy is to have human observer(s) read the
images, detect lesions, and classify the patient or each detected lesion
into a certain class (e.g., malignant or benign). Here, observer com-
petency (multiple trained radiologists/one trained radiologist/resi-
dent/untrained reader) will impact task performance. The choice of
the strategy may impact confidence of the validity of the algorithm.
This is also true for quantification and joint classification/quantifica-
tion tasks. Thus, this strategy should be specified in the claim.

11.5. Figure of Merit (FoM) to Quantify Task Performance

FoMs quantitatively describe the algorithm’s performance on
the clinical task, enabling comparison of different methods, com-
parison to standard of care, and defining quantitative metrics of
success. FoMs should be accompanied by confidence intervals
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(CIs), which quantify uncertainty in performance. To obtain the
FoM, a reference standard is needed. The process to define the ref-
erence standard should be stated.

The Claim Describes the Generalizability of an Al Algorithm:
Generalizability is defined as an algorithm’s ability to properly work
with new, previously unseen data, such as that from a different insti-
tution, scanner, acquired with a different image-acquisition protocol,
or processed by a different reader. By providing all the components
of a claim, an evaluation study will describe the algorithm’s general-
izability to unseen data, since the claim will specify the characteris-
tics of the population used for evaluation, state whether the
evaluation was single or multicenter, define the image acquisition
and analysis protocols used, as well as the competency of the
observer performing the evaluation study. Figure 2 presents a sch-
ematic showing how different kinds of generalizability could be
established. Some key points from this figure are:

e Providing evidence for generalizability requires external valida-
tion. This is defined as validation where some portion of the test-
ing study, such as the data (patient population demographics) or
the process to acquire the data, is different from that in the
development cohort. Depending on the level of external valida-
tion, the claim can be appropriately defined.

e For a study that claims to be generalizable across populations,
scanners, and readers, the external cohort would be from differ-
ent patient demographics, with different scanners, and analyzed
by different readers than the development cohort, respectively.

e Multicenter studies provide higher confidence about generaliz-
ability compared with single-center studies since they typically
include some level of external validation (patients from differ-
ent geographical locations/different scanners/different readers).

lll. METHODS FOR EVALUATION

The evaluation framework for Al algorithms is provided in Fig-
ure 3. The 4 classes of this framework are differentiated based on
their objectives, as briefly described below, with details provided in
the ensuing subsections. An example for an Al low-dose PET recon-
struction algorithm is provided. Figure 3 contains another example
for an Al-based automated segmentation algorithm. A detailed exam-
ple of using this framework to evaluate a hypothetical Al-based
transmission-less attenuation compensation method for SPECT
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(multi-reader studies)
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analysis generalizability
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application to general

Example: Evaluating the Al reconstruc-
tion algorithm on the task of clinically
diagnosing patients referred with the
suspicion of recurrence of cancer.

Class 4: Postdeployment evaluation:
Monitors algorithm performance in dyn-
amic real-world settings after clinical de-
ployment. This may also assess off-label
use, such as the algorithm’s utility in pop-

ulations and diseases beyond the original
claim or with improved imaging cameras
and reconstructions that were not used
during training. Additionally, this evalua-
tion assesses clinical utility and value
over time.

Example: Evaluating whether the Al

population) (scanners/software) populations
Population generalizability
(ethnicity, age group, sex)
Increasing evidence for generalizability
FIGURE 2. Increasing levels of rigor of evaluation, and how they in turn provide increased confi-

dence in the generalizability.

(Supplemental Fig. 1; supplemental materials are available at http://
jnm.snmjournals.org) (17) is provided in Supplemental section A.

e Class 1: Proof-of-concept (POC) evaluation: Shows the novelty
and promise of an algorithm proposed using task-agnostic FoMs.
Provides promise for further clinical task-specific evaluation.
Example: Evaluating the Al PET reconstruction algorithm using
root mean square error.

e Class 2: Technical task-specific evaluation: Quantifies technical
performance of an algorithm on a clinical task using measures
such as accuracy, repeatability, and reproducibility.

Example: Evaluating accuracy on the task of lesion detection
with the Al low-dose PET reconstructed images.

e Class 3: Clinical evaluation: Quantifies the algorithm’s efficacy
to assist in making clinical decisions. Al algorithms that claim
improvements in making diagnostic, predictive, prognostic, or
therapeutic decisions require clinical evaluation.

PET reconstruction algorithm remains
effective over time after clinical
deployment.

In the subsections below, for each class
of evaluation, we provide the key objectives, the best practices for
study design (including determining study type, data collection,
defining a reference standard, and choosing FoMs (Fig. 4)), and
finally, a generic structure for the claim.

111.1. Proof-of-Concept (POC) Evaluation

II1.1.1. Objective: The objective of POC evaluation is to quan-
titatively demonstrate the technologic innovations of newly devel-
oped Al algorithms using task-agnostic FoMs and provide
evidence that motivates clinical task-specific evaluation. Clinical
or task-specific technical claims should not be put forth based on
POC evaluation.

Rationale for Task-Agnostic Objective: A newly developed Al
algorithm may be suitable for multiple clinical tasks. For example,
a segmentation algorithm may be applicable to radiation therapy
planning, estimating volumetric or radiomic features, or monitoring
therapy response. Evaluating the algorithm on all these tasks would

Clinically effective post

Efficacy on task-specific
technical aspects

Method shows
promise

deployment populations
Post-

Efficacy in making clinical deployment Method-derived MTV values can
decisions N prognosticate patient response
Clinical
evaluation

Proof of concept
evaluation

Method works robustly with

Method yields accurate and
precise MTV values

Al-based segmentation
method evaluated with
Dice scores

FIGURE 3. Framework for evaluation of Al-based algorithms. The left of the pyramid provides a brief description of the phase, and the right provides
an example of evaluating an Al-based segmentation algorithm on the task of evaluating MTV using this framework.
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FIGURE 4. Elements of study design for each class of evaluation.

require multiple studies. Further, necessary resources (such as a
large, representative dataset) may not be available to conduct these
studies. Thus, a task-agnostic objective facilitates timely dissemina-
tion and widens the scope of newly developed Al methods.

111.1.2. Study Design: The following are recommended best prac-
tices to conduct POC evaluation of an Al algorithm. Best practices to
develop the algorithm are covered in the companion paper (/6).

Data Collection: In POC evaluation, the study can use realistic
simulations, physical phantoms, or retrospective clinical or research
data, usually collected for a different purpose, for example, routine
diagnosis. The data used for evaluation may come from the develop-
ment cohort, that is, the same overall cohort that the training and val-
idation cohorts were drawn from. However, there must be no overlap
between these data. Public databases, such as those available at The
Cancer Imaging Archive (/8) and from medical image analysis chal-
lenges, such as at https://grand-challenge.org, can also be used.

Defining Reference Standard: For POC evaluations conducted
with simulation and physical phantoms, the ground truth is known.
For clinical data, curation by readers may be used, but that may
not be of the highest quality. For example, curations by a single
reader may be sufficient.

Testing Procedure: The testing procedure should be designed
to demonstrate promising technologic innovation. The algorithm
should thus be compared against reference and/or standard-of-care
methods and preferably other state-of-the-art algorithms.

Figures of Merit: While the evaluation is task-agnostic, the
FoMs should be carefully chosen to show promise for progression to
clinical task evaluation. For example, evaluating a new denoising
algorithm that overly smooths the image at the cost of resolution
using the FoM of contrast-to-noise ratio may be misleading. In those
cases, a FoM such as structural similarity index may be more rele-
vant. We recommend evaluation of the algorithms using multiple
FoMs. A list of some FoMs is provided in Supplemental Table 1.

1I1.1.3. Output Claim of the POC Study: The claim should
state the following:

e The application (e.g., segmentation, reconstruction) for which the
method is proposed.
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The patient population.

The imaging and image analysis protocol(s).

Process to define reference standard.

Performance as quantified with a task-agnostic evaluation
metric.

We reemphasize that the POC study claim should not be inter-
preted as an indication of the algorithm’s expected performance in a
clinical setting or on any clinical task.

Example Claim: Consider the evaluation of a new segmenta-
tion algorithm. The claim could read as follows:

“An Al-based PET tumor-segmentation algorithm evaluated
on 50 patients with locally advanced breast cancer acquired
on a single scanner with single-reader evaluation yielded mean
Dice scores of 0.78 (95% CI 0.71-0.85).”

1.2 Technical Task-Specific Evaluation

1I1.2.1. Objective: The objective of technical task-specific evalua-
tion is to evaluate the technical performance of an Al algorithm on
specific clinically relevant tasks such as those of detection and
quantification using FoMs that quantify aspects such as accuracy (dis-
crimination accuracy for detection task and measurement bias for quan-
tification task) and precision (reproducibility and repeatability). The
objective is not to assess the utility of the method in clinical decision
making, because clinical decision making is a combination of factors
beyond technical aspects, such as prior clinical history, patient biology,
other patient characteristics (age/sex/ethnicity), and results of other clin-
ical tests. Thus, this evaluation does not consider clinical outcomes.

For example, evaluating the accuracy of an Al-based segmenta-
tion method to measure MTV would be a technical efficacy study.
This study would not assess whether more accurate MTV mea-

surement led to any change in clinical outcome.

II1.2.2. Study Design: Given the goal of evaluating technical
performance, the evaluation should be performed in controlled set-
tings. Practices for designing such studies are outlined below. A
framework and summary of tools to conduct these studies in the
context of PET is provided in Jha et al. (10).
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TABLE 1
Technical Evaluation: Comparison of Different Study Types, Associated Trade-Offs, and Criteria That Can Be Evaluated
with the Study Type

Simulation Physical
studies phantoms Clinical studies
Known ground truth Y Y Rarely
Scanner-based Y Y
Advantage Model patient biology Yes, but Y
limited
Model population variability Y Y
Accuracy Y Y
Repeatability/reproducibility/noise sensitivity Y Y
with multiple replicates
Criterion that can be . - . -
evaluated Repeatability/reproducibility/noise sensitivity Y Yes and
with test-retest replicates recommended
Biologic repeatability/reproducibility/noise Y
sensitivity
Costs Low Medium High
Other factors to Time Low Medium High
consider
Confidence about clinical realism Low Medium High

Study Type: A technical evaluation study can be conducted
through the following mechanisms:

1. Realistic simulations are studies conducted with anthropomor-
phic digital phantoms simulating patient populations, where
measurements corresponding to these phantoms are generated
using accurately simulated scanners. This includes virtual clini-
cal trials, which can be used to obtain population-based infer-
ences (19-21).

. Anthropomorphic physical phantom studies are conducted on
the scanners with devices that mimic the human anatomy and
physiology.

. Clinical-data-based studies where clinical data are used to
evaluate the technical performance of an Al algorithm, for
example, repeatability of an Al algorithm measuring MTV in
test-retest PET scans.

The tradeoffs with these 3 study types are listed in Table 1.

using clinical data. Typically, multicenter studies are performed
to improve patient accrual in trials and therefore the same inclu-
sion and exclusion criteria are applied to all centers. Further,
multicenter studies can help assess the need for harmonization
of imaging procedures and system performances.

Data Collection:

Realistic simulation studies: To conduct realistic simulations,
multiple digital anthropomorphic phantoms are available (22).
In virtual clinical trial-based studies, the distribution of simu-
lated image data should be similar to that observed in clinical
populations. For this purpose, parameters derived directly
from clinical data can be used during simulations (4). Expert
reader-based studies can be used to validate realism of simu-
lations (23).

Next, to simulate the imaging systems, tools such as GATE
(24), SIMIND (25), SimSET (26), PeneloPET (27), and others
(10) can be used. Different system configurations, including

Each study type can be single or multiscanner/center, depending

on the claim: those replicating multicenter settings, can be simulated. If the

methods use reconstruction, then clinically used reconstruc-

o Single-center/single-scanner studies are typically performed with a tion protocols should be simulated. Simulation studies should

specific system, image acquisition, and reconstruction protocol. In
these studies, the algorithm performance can be evaluated for vari-
ability in patients, including different demographics, habitus, or dis-
ease characteristics, while keeping the technical aspects of the
imaging procedures constant. These studies can measure the sensi-
tivity of the algorithm to patient characteristics. They can also
study the repeatability of the Al algorithm. Reproducibility may be
explored by varying factors such as reconstruction settings.

Multicenter/multiscanner studies are mainly suitable to explore
the sensitivity of the Al algorithm to acquisition variabilities,
including variability in imaging procedures, systems, recon-
struction methods and settings, and patient demographics if

not use data used for algorithm training/validation.
Anthropomorphic physical phantom studies: For clinical rele-
vance, the tracer uptake and acquisition parameters when imag-
ing these phantoms should mimic that in clinical settings. To
claim generalizable performance across different scanner proto-
cols, different clinical acquisition and reconstruction protocols
should be used. A phantom used during training should not be
used during evaluation irrespective of changes in acquisition
conditions between training and test phases.

Clinical data: Technical evaluation studies will typically be ret-
rospective. Use of external datasets, such as those from an insti-
tution or scanner not used for method training/validation, is

BEST PrACTICES AI EvaLuaTioON - Jha et al. 1293



recommended. Public databases may also be used. Selection cri-
teria should be defined.

Process to Extract Task-Specific Information:

o Classification task: Performance of Al-based reconstruction or
postreconstruction algorithms should ideally be evaluated using
psychophysic studies by expert readers. Methods such as 2 alterna-
tive forced-choice tests and ratings-scale approaches could be used.
When human-observer studies are infeasible, validated numeric
anthropomorphic observers, such as the channelized Hotelling ob-
server with anthropomorphic channels, could be used (11,28,29).
This may be a better choice than using untrained human observers,
who may yield misleading measures of task performance. Al algo-
rithms for optimizing instrumentation/acquisition can be evalu-
ated directly on projection data. This provides the benefit that the
evaluation would be agnostic to the choice of the reconstruction
and analysis method (30,31). In this case, observers that are opti-
mal in some sense, such as the ideal observer (which yields the
maximum possible area under the receiver-operating-characteristics
[ROC] curve [AUC] of all observers) should be used (28). The
ideal observer can be challenging to compute in clinical settings,
and to address this different strategies are being developed (32,33).
An example of evaluating a hypothetical Al method for improv-
ing timing resolution in a time-of-flight PET system is presented in
Jhaetal. (10).

e Quantification task: The task should be performed using optimal
quantification procedures to ensure that the algorithm evaluation
is not biased due to a poor quantification process. Often, per-
forming quantification requires an intermediate manual step.
For example, the task of regional uptake quantification from
reconstructed images may require manual delineation of regions
of interest. Expert readers should perform these steps. Nuclear
medicine images are noisy and corrupted by image-degrading
processes. Thus, the process of quantification should account
for the physics and statistical properties of the measured data.
For example, if evaluating a segmentation algorithm on the task
of quantifying a certain feature from the image, the process of
estimating that feature should account for the image-degrading
processes and noise (/0). Maximum-likelihood estimation
methods could be an excellent choice since they are often unbi-
ased and if an efficient estimator exists, they are efficient (/7).
If using prior information on the parameters to be estimated,
maximum-a-posteriori (34) and posterior-mean (35) estimators
could be used. In several cases, measuring quantitative features
directly from projection data may yield optimal quantification
(36,37) and can be considered.

e Joint classification/quantification task: These tasks should again
be performed optimally. If manual inputs are needed for the
classification or quantification component of the task, these
should be provided by expert readers. Numeric observers such
as channelized scanning linear observers (38) and those based
on deep learning (39) can also be used.

Defining a Reference Standard: For simulation studies, the
ground-truth is known. Experimental errors may arise when
obtaining ground truth from physical-phantom studies, and prefer-
ably, these should be modeled during the statistical analysis. For
clinical studies, ground truth is commonly unavailable. A common
workaround is to define a reference standard. The quality of cura-
tion to define this standard should be high. When the reference
standard is expert defined, multireader studies are preferred where
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the readers have not participated in the training of the algorithm,
and where each reader independently interprets images, blinded to
the results of the Al algorithm and the other readers (40). In other
cases, the reference standard may be the current clinical practice.
Finally, another approach is to use no-gold-standard evaluation
techniques, which have shown ability to evaluate algorithm perfor-
mance on quantification tasks without ground truth (4/—43).
Figures of Merit: A list of FoMs for different tasks is provided
in Supplemental Table 2. Example FoMs include AUC to quantify
accuracy on classification tasks, bias, variance, and ensemble mean
square error to quantify accuracy, precision, and overall reliability
on quantification tasks, and area under the estimation ROC curve
for joint detection/classification tasks. Overall, we recommend the
use of objective task-based measures to quantify performance, and
not measures that are subjective and do not correspond to the clini-
cal task. For a multicenter study, variability of these FoMs across

centers, systems, or observers should be reported.
II1.2.3. Output Claim from Evaluation Study: The claim will

consist of the following components:

e The clinical task (detection/quantification/combination of both)
for which the algorithm is evaluated.

The study type (simulation/physical phantom/clinical).

If applicable, the imaging and image analysis protocol.

If clinical data, process to define ground truth.

Performance, as quantified with task-specific FoMs.

Example Claim: Consider the same automated segmentation
algorithm as mentioned in the proof-of-concept section being eval-
uated to estimate MTV. The claim could be:

“An Al-based fully automated PET tumor-segmentation algo-
rithm yielded MTV values with a normalized bias of X%
(95% confidence intervals) as evaluated using physical-phantom
studies with an anthropomorphic thoracic phantom conducted
on a single scanner in a single center.”

1113 Clinical Evaluation

IIL.3.1. Objective: Evaluate the impact of the Al algorithm on
making clinical decisions, including diagnostic, prognostic, predictive,
and therapeutic decisions for primary endpoints such as improved
accuracy or precision in measuring clinical outcome. While technical
evaluation is geared toward quantifying the performance of a tech-
nique in controlled settings, clinical evaluation investigates clinical
utility in a practical setting. This evaluation will assess the added
value that the Al algorithm brings to clinical decision making.

111.3.2. Study Design:

Study Type: The following study types can be used:

e Retrospective study: A retrospective study uses existing data
sources. In a blinded retrospective study, readers analyzing the
study data are blinded to the relevant clinical outcome. Retro-
spective studies are the most common mechanism to evaluate Al
algorithms. Advantages of these studies include low costs and
quicker execution. These studies can provide considerations for
designing prospective studies. With rare diseases, these may be
the only viable mechanism for evaluation. However, these stud-
ies cannot conclusively demonstrate causality between the algo-
rithm output and the clinical outcome. Also, these studies may
be affected by different biases such as patient-selection bias.

e Prospective observational study: In this study, the consequential
outcomes of interest occur after study commencement, but the
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Does the study claim
directly make interventional

recommendations?
No
Is data available to Yes
clinically evaluate
Yes the method?
No
Recommend Recommend Recommend
blinded prospective prospective
retrospective observational study/ interventional study/
study real-world evidence real-world evidence

FIGURE 5. Flowchart to determine the clinical evaluation strategy.

decision to assign participants to an intervention is not influ-
enced by the algorithm (44). These studies are often secondary
objectives of a clinical trial.

e Prospective interventional study: In a prospective interventional
study of an Al algorithm, the decision to assign the participant
to an intervention depends on the Al algorithm output. These
studies can provide stronger evidence for causation of the Al
algorithm output to clinical outcome. The most common and
strongest prospective interventional study design are random-
ized control trials, although other designs such as nonrandom-
ized trials and quasiexperiments are possible (45). Randomized
control trials are considered the gold standard of clinical evalua-
tion but are typically logistically challenging, expensive, and
time consuming, and should not be considered as the only
means to ascertain and establish effective algorithms.

e Real-world postdeployment evaluation studies: These studies use
real-world data from Al algorithms that have received regulatory
clearance (43). Such studies have the potential to provide information
on a wider patient population compared with a prospective interven-
tional study. Moreover, the real-world data can be leveraged not only
to improve performance of the initially cleared Al device but also to
evaluate new clinical applications that require the same data or data
similar to the initially cleared Al module, thus saving time and cost.
The study design should be carefully crafted with a study protocol
and analysis plan defined before retrieving/analyzing the real-world
data (46,47), with special attention paid to negate bias (48).

Choosing the study type is a multifactorial decision (Fig. 5). To
decide on the appropriate study type, we make a distinction between
Al algorithms that make direct interventional recommendations (pre-
scriptive Al) and those that do not (descriptive Al):

e A purely descriptive Al algorithm does not make direct inter-
ventional recommendations but may alter clinical decision mak-
ing. The algorithms can be further categorized into those that
describe the present (e.g., for diagnosis, staging, therapy
response assessment) versus those that predict the future (e.g.,
prognosis of therapy outcome, disease progression, overall sur-
vival). There are close links between these 2 categories, and the
line between them will likely be increasingly blurred in the era
of Al: for example, more-refined Al-derived cancer staging that
is trained with outcome data and therefore becomes highly pre-
dictive of outcome. A well-designed blinded retrospective study
is sufficient to evaluate a purely descriptive Al system. How-
ever, if clinical data for a retrospective study do not exist, a pro-
spective observational or real-world study is required.

e A prescriptive Al algorithm makes direct interventional recom-
mendation(s). It may have no autonomy (i.e., only making a rec-
ommendation to a physician) or full autonomy (no supervision),
or grades in between. For a prescriptive Al algorithm that is not
autonomous, a prospective interventional study is recommended.
A well-designed real-world study may be used as a substitute.
However, for a fully autonomous prescriptive Al system of the
future (e.g., fully automated therapy delivery), such a study may
be required. Future studies and recommendations are needed for
autonomous prescriptive Al systems, as the field is not mature
enough. Thus, we limit the scope of this section to only those sys-
tems that have expert physician supervision.

Data Collection: An Al algorithm yielding strong performance
using data from one institution may perform poorly on data from
other institutions (5). Thus, we recommend that for clinical evalua-
tion, test data should be collected from different, and preferably mul-
tiple, institutions. Results from external institutions can be compared
with internal hold-out samples (data from the same institution not
used for training) to evaluate generalizability. To avoid variation due
to site selection used for the external validation, or random bias in
internal sample selection, a leave-one-site repeated hold-out (e.g., 10-
fold cross-validation) strategy can be used with a dataset that is
completely independent from the training and validation dataset.

To demonstrate applicability over a certain target population,
the collected data should be representative of that population in
terms of demographics. When the goal is studying performance on
a specific population subset (e.g., patients with large body mass
indices) or checking sensitivity of the method to certain factors
(e.g., patients with metallic implants), the other criteria for patient
selection should be unbiased. This ensures that the evaluation spe-
cifically studies the effect of that factor.

In studies that are retrospective or based on real-world data,
once a database has been set up corresponding to a target popula-
tion using existing datasets, patients should be randomly selected
from this database to avoid selection bias.

Sample-size considerations: The study must have a predefined
statistical analysis plan (49). The sample size is task dependent.
For example, if the claim of improved AUC with the Al method
versus a non-Al approach or standard clinical analysis is studied,
then the sample size will be dictated by the detection of the
expected change between the 2 AUCs. Inputs required for power
analysis to compute sample size may be obtained from POC and
technical evaluation studies or separate pilot studies.

Defining a Reference Standard: For clinical evaluation, the ref-
erence standard should be carefully defined. This requires in-depth
clinical and imaging knowledge of the data. Thus, medical experts
should be involved in defining task-specific standards. Some refer-
ence standards are listed below:

e Clinical outcomes: Eventually the goal of imaging is to improve
clinical outcomes. Outcomes such as overall survival, progression-
free survival, major clinical events, and hospitalization could thus
serve as gold standards, especially for demonstrating clinical util-
ity in predictive and prognostic tasks. A decrease in the use of
resources because of the Al tool with comparable outcomes could
also be a relevant and improved outcome (e.g., fewer nonessential
call back tests with Al).

e External standard: For disease diagnosis tasks, when available,
an external standard such as invasive findings, for example,
biopsy-pathology or invasive coronary angiography, or some
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other definitive diagnosis (derived from other means than the
images used) could be considered.

e Trained-reader-defined clinical diagnosis: For diagnostic tasks,
expert reader(s) can be used to assess the presence/absence of
the disease. Similar best practices as outlined for evaluating
technical efficacy should be followed to design these studies.
However, note that, unlike technical evaluation, here the goal is
disease diagnosis. Thus, the readers should also be provided
other factors that are used to make a clinical decision, such as
the patient age, sex, ethnicity, other clinical factors that may
impact disease diagnosis, and results from other clinical tests.
Note that if the reference standard is defined using a standard-
of-care clinical protocol, it may not be possible to claim
improvement over this protocol. In such a case, agreement-
based studies can be performed and concordance with these
protocol results could be claimed within certain confidence lim-
its. For example, to evaluate the ability of an Al-based transmis-
sion-less attenuation compensation algorithm for SPECT/PET,
we may evaluate agreement of the estimates yielded by this
algorithm with that obtained when a CT is used for attenuation
compensation (50).

Figure of Merit: We recommend quantifying performance on
strong, impactful, and objectively measurable endpoints such as
improved accuracy or precision in measuring clinical outcome. The
FoMs are summarized in Supplemental Table 2. To evaluate per-
formance on diagnosis tasks, the FoMs of sensitivity, specificity,
ROC curves, and AUC can be used. Since the goal is demonstrat-
ing the performance of the algorithm in clinical decision making,
sensitivity and specificity may be clinically more relevant than
AUC. To demonstrate clinical utility in predictive and prognostic
decision making, in addition to AUC, FoMs that quantify perfor-
mance in predicting future events such as Kaplan-Meier estimators,
prediction risk score, and median time of future events can be used.

111.3.3. Output Claim from Clinical Evaluation Study: The
claim will state the following:

The clinical task for which the algorithm is evaluated.

The patient population over which the algorithm was evaluated.
The specific imaging and image-analysis protocol(s) or stand-
ards followed.

Brief description of study design: Blinded/nonblinded, random-
ized/nonrandomized, retrospective/prospective/postdeployment,
observational/interventional, number of readers.

Development

Registry, pilot
studies to develop
clinical
hypothesis,
feedback to
developers

Evaluation

2
3
T Monitoring
>

Independe
validation

Patient
safety,
tracking of
issues

monitoring study

FIGURE 6. Chart showing the different objectives of postdeployment
monitoring, grouped as a function of the scope and goal of the study.
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e Process to define reference standard and FoM to quantify per-
formance in clinical decision making.

Example Claims:

i. Retrospective study: The average AUC of 3 experienced readers
on the task of detecting obstructive coronary artery disease from
myocardial perfusion PET scans improved from X to Y, repre-
senting an estimated difference of A (95% CI for A), when using
an Al-based diagnosis tool compared with not using this tool, as
evaluated using a blinded retrospective study.

. Prospective observational study: Early change in MTV measured
from FDG PET using an Al-based segmentation algorithm yielded
an increase in AUC from X to Y, representing an estimated differ-
ence of A (95% CI for A) in predicting pathologic complete
response in patients with stage II/IIl breast cancer, as evaluated
using a nonrandomized prospective observational study.

Prospective interventional study: Changes in PET-derived quan-

titative features estimated with the help of an Al algorithm dur-

ing the interim stage of therapy were used to guide treatment
decisions in patients with stage III non—small cell lung cancer.

This led to an X% increase (95% CI) in responders than when

the Al algorithm was not used to guide treatment decisions, as

evaluated using a randomized prospective interventional study.

=

i

=

iil.

11l.4. Postdeployment Evaluation

II1.4.1. Objective: Postdeployment evaluation has multiple
objectives. A key objective is monitoring algorithm performance
after clinical deployment including evaluating clinical utility and
value over time. Other objectives include off-label evaluation and

collecting feedback for proactive development (Fig. 6).

111.4.2. Evaluation Strategies:

Monitoring: Quality and patient safety are critical factors in
postdeployment monitoring of an Al algorithm. It is imperative to
monitor devices and follow reporting guidelines (such as adverse
events), recalls, and corrective actions. Fortunately, applicable laws
and regulations require efficient processes in place. Often, logging
is used to identify root causes for equipment failure. However, the
concept of logging can be expanded: advanced logging mecha-
nisms could be used to better understand use of an Al algorithm. A
simple use case is logging the frequency of using an Al algorithm
in clinical workflow. Measuring manual intervention for a work-
flow step that was designed for automation could provide a first
impression of the performance in a clinical environment. However,
more complex use cases may include the aggregation of data on Al
algorithm performance and its impact on patient and disease man-
agement. For wider monitoring, feedback should be sought from
customers, including focus groups, customer complaint and inquiry
tracking, and ongoing technical performance benchmarking (517).
This approach may provide additional evidence on algorithm per-
formance and could assist in finding areas of improvements, clini-
cal needs not well served or even deriving a hypothesis for further
development. Advanced data logging and sharing must be compli-
ant with applicable patient privacy and data protection laws and
regulations.

Routinely conducted image-quality phantom studies also provide
a mechanism for postdeployment evaluation by serving as sanity
checks to ensure that the Al algorithm was not affected by a main-
tenance operation such as a software update. These studies could
include assessing contrast or SUV recovery, absence of nonuni-
formities or artifacts, cold-spot recovery, and other specialized tests
depending on the Al algorithm. Also, tests can be conducted to
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TABLE 2
RELAINCE Guidelines

Class of evaluation

Recommendation

Ensure no overlap between development and testing cohort.

Check that ground-truth quality is reasonable.

Proof of concept evaluation

Provide comparison with conventional and state-of-the-art methods.

Choose figures of merit that motivate further clinical evaluation.

Choose clinically relevant tasks: Detection/quantification/combination of both.

Determine the right study type: Simulation/phantom/clinical.

Ensure that simulation studies are realistic and account for population variability.

Technical task-specific evaluation

Testing cohort should be external.

Reference standard should be high quality and correspond to the task.

Use a reliable strategy to extract task-specific information.

Choose figures of merit that quantify task performance.

Determine study type: Retrospective, prospective observational, prospective
interventional, or postdeployment real-world studies.

Testing cohort must be external.

Clinical evaluation

Collected data should represent the target population as stated in the claim.

Reference standard should be high quality and be representative of those used for clinical

decision making.

Figure of merit should reflect performance on clinical decision making.

Monitor devices and follow reporting guidelines.

Consider phantom studies as sanity checks to assess routine performance.

Postdeployment evaluation

Periodically monitor data drift.

For off-label evaluation, follow recommendations as in clinical/technical evaluation

depending on objective.

ensure that there is a minimal or harmonized image quality as
required by the Al tool for the configurations as stated in the claim.

Al systems likely will operate on data generated in nonstation-
ary environments with shifting patient populations and clinical and
operational practices changing over time (9). Postdeployment stud-
ies can help identify these dataset shifts and assess if recalibration
or retraining of the Al method may be necessary to maintain per-
formance (52,53). Monitoring the distribution of various patient
population descriptors, including demographics and disease preva-
lence, can provide cues for detecting dataset shifts. In the case of
changes in these descriptors, the output of the Al algorithm can be
verified by physicians for randomly selected test cases. A possible
solution to data shift is continuous learning of the Al method (54).
In Supplemental Section B, we discuss strategies (55—-57) to evalu-
ate continuous-learning-based methods.

Off-Label Evaluation: Typically, an Al algorithm is trained and
tested using a well-defined cohort of patients, in terms of patient dem-
ographics, applicable guidelines, practice preferences, reader exper-
tise, imaging instrumentation, and acquisition and analysis protocols.
However, the design of the algorithm may suggest acceptable perfor-
mance in cohorts outside the intended scope of the algorithm. Here, a
series of cases is appropriate to collect preliminary data that may sug-
gest a more thorough trial. An example is a study where an Al algo-
rithm that was trained on patients with lymphoma and lung cancer
(58) showed reliable performance in patients with breast cancer (59).

Collecting Feedback for Proactive Development: Medical
products typically have a long lifetime. This motivates proactive

development and maintenance to ensure that a product represents
state of the art throughout its lifetime. This may be imperative for
Al where technologic innovations are expected to evolve at a fast
pace in the coming years. A deployed Al algorithm offers the
opportunity to pool data from several users. Specifically, registry
approaches enable cost-efficient pooling of uniform data, multi-
center observational studies, and POC studies that can be used to
develop a new clinical hypothesis or evaluate specific outcomes
for particular diseases.

Figures of Merit: We provide the FoMs for the studies where
quantitative metrics of success are defined.

e Monitoring study with clinical data: Frequency of clinical usage
of the AI algorithm, number of times the Al-based method
changed clinical decisions or affected patient management.

e Monitoring study with routine physical phantom studies: Since
these are mostly sanity checks, FoMs similar to those used
when evaluating POC studies may be considered. In case task-
based evaluation is required, FoMs as provided in Supplemental
Table 1 may be used.

e Off-label evaluation: FoMs similar to those used when perform-
ing technical and clinical evaluation may be considered.

IV. DISCUSSION

The key recommendations from this article are summarized in
Table 2. These are referred to as the RELAINCE (Recommendations
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for EvaLuation of Al for NuClear medicinE) guidelines, with the goal
of improving the reliance of Al for clinical applications. Unlike other
guidelines for the use of Al in radiology (60—62), these guidelines are
exclusively focused on best practices for Al algorithm evaluation.

This report advocates that an evaluation study should be geared
toward putting forth a claim. The objective of the claim can be
guided by factors such as the degree of impact on patient manage-
ment, level of autonomy, and the risk that the method poses to
patients. Risk categories have been proposed for medical software
by the International Medical Device Regulators Forum and subse-
quently adopted by the Food and Drug Administration (63). The
proposed risk categories range from 1 (low risk) to 4 (highest risk)
depending on the vulnerability of the patient and the degree of
control that the software has in patient management. The pathway
that a developing technology will take to reach clinical adoption
will ultimately depend on which risk category it belongs to, and
investigators should assess risk early during algorithm develop-
ment and plan accordingly (64).

In this report, we have proposed a 4-class framework for evalu-
ation. For clinical adoption, an algorithm may not need to pass
through all classes. The POC evaluation is optional as the objec-
tive of this class is to only demonstrate promise for further evalua-
tion. Further, not all these classes may be fully relevant to all
algorithms. For example, an Al segmentation algorithm may require
technical but not necessarily clinical evaluation for clinical adoption.
The types of studies required for an algorithm will depend on the
claim. For example, an Al algorithm that claims to make improve-
ment in making clinical decisions will require clinical evaluation.
For clinical acceptability of an Al algorithm, evaluating performance
on clinical tasks is most important. POC, technical, and clinical eval-
uation could all be reported in the same multipart study.

The evaluation studies should preferably be multidisciplinary
and include computational imaging scientists, physicians, physi-
cists, and statisticians right from the study conception stage. Physi-
cians should be closely involved because they are the end users of
these algorithms. Previous publications have outlined the impor-
tant role of physicians in evaluation of Al algorithms (65), includ-
ing for task-based evaluation of Al algorithms for nuclear
medicine (10).

The proposed best practices are generally applicable to evaluating
a wide class of Al algorithms, including supervised, unsupervised,
and semisupervised approaches. For example, we recommend that
for even semisupervised and unsupervised learning algorithms, the
algorithm should be evaluated on previously unseen data. Addition-
ally, these best practices are broadly applicable to other machine
learning as well as physics-based algorithms for nuclear medicine
imaging. Further, whereas these guidelines are being proposed in the
context of nuclear medicine imaging, they are also broadly applicable
to other medical imaging modalities.

In addition to the above practices, we also recommend that in
each class of evaluation, evaluation studies should attempt to assess
the interpretability of the algorithm. In fact, rigorous evaluations
may provide a mechanism to make the algorithm more interpretable.
For example, a technical efficacy study may observe suboptimal per-
formance of an Al-based denoising algorithm on the tumor-detection
task. Then, the evaluation study could investigate the performance of
the algorithm for different tumor properties (size/tumor-to-back-
ground ratio) on the detection task (66). This will provide insights on
the working principles of the algorithm, thus improving the interpret-
ability of the algorithm.
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In summary, Al-based algorithms present an exciting toolset for
advancing nuclear medicine. We envision that following these
best practices for evaluation will assess suitability and provide
confidence for clinical translation of these algorithms, and provide
trust for clinical application, ultimately leading to improvements
in the quality of health care.
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