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18F-FDG PET is often used in clinical routine for diagnosis, stag-
ing, and response to therapy assessment or prediction. The
standardized uptake value (SUV) in the primary or regional area
is the most common quantitative measurement derived from
PET images used for those purposes. The aim of this study
was to propose and evaluate new parameters obtained by tex-
tural analysis of baseline PET scans for the prediction of therapy
response in esophageal cancer. Methods: Forty-one patients
with newly diagnosed esophageal cancer treated with com-
bined radiochemotherapy were included in this study. All
patients underwent pretreatment whole-body 18F-FDG PET.
Patients were treated with radiotherapy and alkylatinlike agents
(5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin). Patients were
classified as nonresponders (progressive or stable disease),
partial responders, or complete responders according to the
Response Evaluation Criteria in Solid Tumors. Different image-
derived indices obtained from the pretreatment PET tumor
images were considered. These included usual indices such as
maximum SUV, peak SUV, and mean SUV and a total of 38
features (such as entropy, size, and magnitude of local and global
heterogeneous and homogeneous tumor regions) extracted from
the 5 different textures considered. The capacity of each param-
eter to classify patients with respect to response to therapy was
assessed using the Kruskal–Wallis test (P, 0.05). Specificity and
sensitivity (including 95% confidence intervals) for each of the
studied parameters were derived using receiver-operating-
characteristic curves. Results: Relationships between pairs of
voxels, characterizing local tumor metabolic nonuniformities,
were able to significantly differentiate all 3 patient groups (P ,
0.0006). Regional measures of tumor characteristics, such as
size of nonuniform metabolic regions and corresponding inten-
sity nonuniformities within these regions, were also significant
factors for prediction of response to therapy (P 5 0.0002).
Receiver-operating-characteristic curve analysis showed that
tumor textural analysis can provide nonresponder, partial-
responder, and complete-responder patient identification with
higher sensitivity (76%–92%) than any SUV measurement.
Conclusion: Textural features of tumor metabolic distribution
extracted from baseline 18F-FDG PET images allow for the best

stratification of esophageal carcinoma patients in the context of
therapy-response prediction.
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Esophageal cancer is associated with high mortality.
In patients with early-stage disease at presentation, esopha-
gectomy is the treatment of choice and is potentially cu-
rative. Unfortunately most patients at presentation have
already locally advanced esophageal cancer or distant
metastases. In locally advanced esophageal cancer, preop-
erative chemotherapy or radiochemotherapy will improve
survival in patients who respond to induction therapy (1,2).
On the other hand, patients who do not respond to neo-
adjuvant therapy may be affected unnecessarily by the tox-
icity of an inefficient therapy. Therefore, the development
of a diagnostic test capable of noninvasively predicting
response to therapy early in the course of treatment is of
great interest, potentially allowing personalization of pa-
tient management. In patients treated by exclusive conven-
tional combined radiochemotherapy, assessment of response
is equally of great interest, because it could allow an early
change in the management of nonresponding patients. Such
assessment becomes more critical when one considers the
availability of new targeted therapies that could be tested
with higher efficiency if applied early in diagnosis (3,4).

18F-FDG PET is already well established for the initial
staging of esophageal cancer, because it is associated with a
better sensitivity and specificity than combined use of CT
and echoendoscopy, especially regarding detection of dis-
tant metastasis (5).

18F-FDG PET has been also used to assess response to
therapy and patient outcome prognosis (4,6). Within this
context, few studies have explored the potential prognostic
value of pretreatment 18F-FDG PET, demonstrating that
the level of activity concentration on preoperative PET,
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although not statistically significant, tends to predict overall
survival (7–9).
On the other hand, several studies have evaluated the

role of PET in assessing treatment response based on 18F-
FDG uptake changes between a pre- and a posttreatment
PET scan obtained during or after the treatment comple-
tion. Studies considering a second PET scan after treat-
ment completion have shown that a complete metabolic
response is associated with better outcome (10–12). How-
ever, because that information is of limited interest in
patient management if acquired late, different attempts
have been made to determine whether 18F-FDG PET
could be used for assessing response to therapy earlier
(usually within a few weeks) in the course of treatment
(13–15), showing some promising results that need to be
confirmed in multicenter trials (4). One of the highlighted
issues is that early response prediction during combined
chemoradiotherapy, in contrast to chemotherapy alone,
may be compromised by increased 18F-FDG tumor
uptake resulting from radiotherapy-induced inflammatory
processes (4).
An alternative to monitoring changes during treatment

is the potential of predicting response to therapy from the
baseline 18F-FDG PET scan alone, which may allow the
best available therapy regime to be chosen for a given
patient. However, to date there is only limited evidence
that a measure of tumor activity concentration on a base-
line PET scan in esophageal cancer can differentiate
groups of patient response (8,9). Within the same context,
parameters derived from pretreatment 18F-FDG PET have
shown the potential to differentiate between responders
and nonresponders (NRs) in non-Hodgkin lymphoma
patients (16).
The PET image index predominantly used in such studies

for assessment of metabolic response is the normalized
mean tumor activity concentration known as the mean
standardized uptake value (SUVmean), within a region of
interest around the tumor, or the maximum standardized
uptake value corresponding to the highest-activity pixel
value (SUVmax). However, 18F-FDG tumor uptake has been
associated not only with increased metabolism but also with
several other physiologic parameters such as perfusion, cell
proliferation (17), tumor viability, aggressiveness, or hyp-
oxia (18,19), all of which may in turn be responsible for
tumor uptake heterogeneity. Therefore, the hypothesis can
be made that characterizing tumor 18F-FDG distribution,
through its relationship to underlying tumor biologic char-
acteristics, may be useful in predicting therapy response.
18F-FDG tumor activity distribution may be assessed in
a global, regional, or local fashion, allowing in turn the
assessment of corresponding global, regional, or local pat-
terns of biologic heterogeneity. Although the measurement
of such features have been previously explored in anatomic
imaging (20–22), they have not to date been widely used in
PET. Until now, only 1 study has considered the use of
some textural features to predict treatment outcome from

baseline 18F-FDG PET images, with encouraging results in
cervical and head and neck cancer (23), and the assessment
of spatial heterogeneity was also shown to be significantly
associated with survival in sarcoma patients (24). However,
the potential predictive value of tumor heterogeneity char-
acterization on a baseline 18F-FDG PET scan has never
been assessed.

The objective of this current study was, therefore, to
assess the predictive value of 18F-FDG uptake heterogene-
ity characterized by textural features extracted from pre-
therapy 18F-FDG PET images of patients with esophageal
carcinoma by assessing the ability of each parameter to
identify different categories of responders. The predictive
value of these parameters was compared with the use of
standard image activity concentration indices (SUVmax,
SUVmean). The potential prognostic value of such image-
derived parameters for assessing overall patient survival
was not assessed in this study.

MATERIALS AND METHODS

Patients
Forty-one patients with newly diagnosed esophageal cancer

treated with exclusive radiochemotherapy between 2003 and 2008
were included in this study. The characteristics of the patients are
summarized in Table 1. The mean age at the time of diagnosis was
66 6 10 y (median, 69 y; range, 45–84 y), and 85% of patients
were male. Most of the tumors were squamous cell carcinoma
(76%), and most of the patients had a well or moderately differ-
entiated tumor (56%). Most of the tumors originated from the
middle and lower esophagus (76%). Twenty-six patients had a
T3 or T4 primary lesion, 25 had N1 (61%) lymph node metastases,
and 17 had distant metastases (Table 1). All patients were treated
with external-beam radiotherapy and chemotherapy with alkylatin-
like agents (5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin).
A median radiation dose of 60 Gy was delivered in 180-cGy daily
fractions (5 d/wk and 6–7 wk in total). One month after the com-
pletion of the treatment, patients were reassessed to determine
response to therapy using thoracoabdominal CT and endoscopy.
Patients were subsequently classified as complete responders
(CR), partial responders (PR), stable disease, or progressive dis-
ease. Response was assessed using pretreatment and posttreatment
CT scans by evaluating the increase (or decrease) in the sum of the
longest diameters for all target lesions and the appearance, persis-
tence, or disappearance of nontarget lesions, according to the
Response Evaluation Criteria in Solid Tumors (RECIST) (25).
Considering the small number of patients in the stable disease (7)
and progressive disease (4) groups, these patients were eventually
combined into an NR group.

All patients underwent pretreatment whole-body 18F-FDG PET
for staging purposes. Patients were instructed to fast for a minimum
of 6 h before the injection of 18F-FDG. The dose of administered
18F-FDG was 5 MBq/kg, and static emission images were
acquired from thigh to head, on average 54 min after injection,
on a Gemini PET/CT scanner (Philips). In addition to the emission
PET scan, a low-dose CT scan was acquired for attenuation-cor-
rection purposes. Images were reconstructed with the 3-dimen-
sional (3D) row-action maximum-likelihood algorithm using
standard clinical protocol parameters (2 iterations, relaxation
parameter of 0.05, and 3D gaussian postfiltering of 5 mm in
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full width at half maximum). The current data analysis was per-
formed after approval by the institutional review board.

Tumor Analysis
For each patient, primary tumors were identified on 18F-FDG

PET images by an experienced nuclear physician. Tumors were
then delineated automatically using the previously validated fuzzy
locally adaptive Bayesian algorithm (26). All parameters were
subsequently extracted from this delineated volume. Only the pri-
mary tumors were considered because textural analysis cannot be
reliably performed on small lesions (nodal or distant metastases)
because of the small number of voxels involved.

Standardized Uptake Value (SUV) Analysis
The following SUV parameters were extracted from each

patient’s baseline PET images: SUVmax; peak SUV (SUVpeak),
defined as the mean of the voxel of maximum value and its 26
neighbors (in 3 dimensions); and mean SUV within the delineated
tumor (SUVmean). The SUVpeak was considered in addition to
SUVmax to investigate the impact of reducing the potential bias
in the SUVmax measurements as a result of its sensitivity to noise.

Textural Analysis
We define texture as a spatial arrangement of a predefined

number of voxels allowing the extraction of complex image
properties, and we define a textural feature as a measurement
computed using a texture matrix. The method used was realized
in 2 steps. First, matrices describing textures on images were
extracted from tumors, and textural features were subsequently
computed using theses matrices. All these parameters characterize
in some way tumor heterogeneity at local and regional (using
texture matrices) or global scales (using image-voxel-intensity
histograms).

Several different textures (Table 2, left column) were com-
puted. Voxel values within the segmented tumors (Fig. 1A and
1B) were resampled to yield a finite range of values (Fig. 1C),
allowing textural analysis using:

VðxÞ 5
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i
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i2V

i 2 min
i2V

i1 1

#
Eq. 1

where 2S represents the number of discrete values (16–128), I is
the intensity of the original image, and V is the set of voxels in the
delineated volume. This resampling step on the delineated tumor
volume, necessary for the computation of the textural analysis, has
2 effects: it reduces the noise in the image by clustering voxels
with similar intensities and it normalizes the tumor voxel inten-
sities across patients, which in turn facilitates the comparison of
the textural features. Local and regional features were computed
with different resampling considering 16, 32, 64, and 128 dis-
crete values to investigate the potential impact of this resampling
parameter.

All considered textures were originally described for 2
dimensions (27–30) and were therefore adapted in this work for
3 dimensions. The cooccurrence matrix (M1, Fig. 1D(a)) describ-
ing pairwise arrangement of voxels, and the matrix describing the
alignment of voxels with the same intensity (M2, Fig. 1D(b)),
were computed considering 13 different angular directions.
Finally, 3D matrices describing differences between each voxel
and its neighbors (M3, Fig. 1D(c)) and characteristics of homoge-
neous zones (M4, Fig. 1D(d)) were computed considering for each
voxel the neighbors in the 2 adjacent planes, adapting the normal-
izing factors to 3 dimensions.

From each of the extracted texture matrices, different features
summarized in Table 2 (middle column) were computed. Depend-
ing on the way the matrix is analyzed, it is possible to extract
features of a local or regional nature. Six features highlighting
local variations of voxel intensities within the image were
extracted from the cooccurrence matrices M1 (Fig. 2C). For exam-
ple, using the matrix M1, the local entropy and homogeneity are
calculated using Equations 2 and 3, respectively:

Local entropy 52+
i; j

M1ði; jÞlogðMði; jÞÞ Eq. 2

Local homogeneity 5 +
i; j

M1ði; jÞ
11ji 2 jj Eq. 3

where M1 is a cooccurrence matrix, i, j are the rows and columns
index, and M1(i,j) is an element of the matrix.

In addition, M3 matrices were used to extract busyness
(quantifying sharp-intensity variations) and contrast and coarse-

TABLE 1
Characteristics of Patients (n 5 41)

Characteristic No. of patients

Sex
Male 35 (85)
Female 6 (15)

Primary site
Upper esophagus 10 (24)

Middle esophagus 15 (37)
Lower esophagus 16 (39)

Tumor cell type
Squamous cell carcinoma 31 (76)

Adenocarcinoma 10 (24)

Histologic grade
Well differentiated 12 (29)
Moderately differentiated 11 (27)

Poorly differentiated 3 (7)

Unknown 15 (37)

TNM stage
T1 6 (15)
T2 7 (17)

T3 21 (51)

T4 7 (17)
N0 16 (39)

N1 25 (61)

M0 24 (59)

M1 17 (41)
AJCC stage

I 4 (10)

IIa 6 (15)

IIb 5 (12)

III 12 (29)
IVa 4 (10)

IVb 10 (24)

RECIST
CR 9 (22)
PR 21 (51)

Stable disease (NR) 7 (17)

Progressive disease (NR) 4 (10)

Data in parentheses are percentages.
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ness (quantifying tumor granularity). These features allow extract-
ing measurements describing tumor local heterogeneity propor-
tional to variations of 18F-FDG uptake between individual voxels.

On the other hand, the M2 and M4 matrices were used to extract
regional tumor uptake characteristics, representing regional hetero-
geneity, such as variation of intensity between regions and in the
size and alignment of homogeneous areas. For example, the M4
matrix links the homogeneous tumor regions to their intensity (Fig.

2B). It was hence used to calculate the variability in the size and the
intensity of identified homogeneous tumor zones according to Equa-
tions 4 and 5, respectively:

Size-zone variability 5
1

Q
+
M

m51

"
+
N

n51

M4ðm; nÞ
#2

Eq. 4

TABLE 2
Texture Type and Associated Features

Type Feature Scale

Features based on intensity histogram Minimum intensity Global
Maximum intensity
Mean intensity
Variance
SD
Skewness
Kurtosis

Features based on voxel-alignment matrix (M2) Short run emphasis Regional

Long run emphasis
Intensity variability
Run-length variability
Run percentage
Low-intensity run emphasis
High-intensity run emphasis
Low-intensity short-run emphasis
High-intensity short-run emphasis
Low-intensity long-run emphasis
High-intensity long-run emphasis

Features based on intensity–size–zone matrix (M4) Short-zone emphasis Regional
Large-zone emphasis
Intensity variability
Size-zone variability
Zone percentage
Low-intensity zone emphasis
High-intensity zone emphasis
Low-intensity short-zone emphasis
High-intensity short-zone emphasis
Low-intensity large-zone emphasis
High-intensity large-zone emphasis

Features based on cooccurrence matrices (M1) Second angular moment Local

Contrast (inertia)
Entropy
Correlation
Homogeneity
Dissimilarity

Features based on neighborhood intensity-difference matrix (M3) Coarseness Local
Contrast
Busyness

FIGURE 1. Whole-body 18F-FDG PET

scan (A), tumor segmentation (B), and

voxel-intensity resampling (C) allowing
extraction of different features (D) by analy-

sis of consecutive voxels in a direction (for

cooccurrence matrices) (a), alignment of

voxels with same intensity (b), difference
between voxels and their neighbors (c),

and zones of voxels with same intensity (d).
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Intensity variability 5
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where Q represents the number of homogeneous areas in the
resampled tumor, M the number of distinct intensity values within
the tumor, and N the size of the largest homogeneous area in the
matrix M4.

Finally, global features are computed on the original image
voxels’ intensity distribution by analyzing the characteristics of the
intensity value histogram within the segmented tumor (Fig. 2A).

Thirty-eight features were extracted from the 4 different texture
matrices and intensity histograms. Seven of the 38 features
characterize the uptake distribution within the entire tumor (using
the intensity histogram), 9 describe local voxel arrangements (using
matrices M1 and M3), and 22 are related to the organization of
voxels at a regional scale (using matrices M2 and M4).

Statistical Analysis
The capacity of each feature to classify patients with respect to

therapy response was investigated on the primary tumor using the
Kruskal–Wallis test (8). P values of less than 0.05 were considered
statistically significant. Specificity and sensitivity (including 95%
confidence intervals [CIs]) for each of the studied parameters were
derived using receiver operating characteristic (ROC) curves mea-
suring associated areas under the ROC curves (AUC). Texture results

were compared with those of SUVmax, SUVmean, and SUVpeak for
their ability to distinguish among responders (PR and CR) and
NRs, CRs and non-CRs (PR, NR), and all 3 groups separately.

RESULTS

Patients were evaluated 1 mo after the completion of
combined radiochemotherapy. Nine patients (22%) had no
evidence of disease after treatment and were considered
CRs. Radiochemotherapy led to partial response in 21
(51%) patients, whereas 11 (27%) were stable or progressed
under treatment according to RECIST (25).

Results of the Kruskal–Wallis test show that SUVmax

(Fig. 3) and SUVmean were capable of differentiating only
CRs from NRs and PRs. Within this context, all SUV mea-
surements were significant predictive factors of response
(P 5 0.034, 0.044, and 0.012 for the SUVmax, SUVmean,
and SUVpeak, respectively). However, only SUVpeak was a
significant predictive factor (P 5 0.045) when considering
the differentiation of 3 patient response groups (i.e., NR, PR,
and CR), whereas SUVmax and SUVmean were not (P. 0.05).

Figure 4 shows examples of different extracted features
and associated values for tumors of CRs, PRs, and NRs.
The Kruskal–Wallis tests revealed no statistically signifi-
cant differences in the textural parameters derived using

FIGURE 2. Examples of features extracted from tumor resampled on 4 values: 3 global features computed using intensity histogram,
2 regional features computed using M4 matrix, and 2 local features computed using M1 texture matrices.
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different resampling values (16, 32, 64, or 128 discrete
values). All subsequent reported results were obtained
using 64 discrete values in the resampling normalization
process. This value was chosen because it allows for 0.25
SUV increments, which were considered sufficient given
the range of SUVs encountered (from ;4–20).

None of the global features extracted from the intensity
histogram within the tumor was a significant predictive
factor of response to therapy. However, considering local
variation of 18F-FDG uptake, a high predictive value (P ,
0.0007) was found using the cooccurrence features, partic-
ularly considering the use of the average feature values

FIGURE 3. Box-plot representation of

parameters’ values in function of patient

response (0, NR; 1, PR; and 2, CR) for SUVmax

(P 5 0.106) (A), SUVpeak (P 5 0.045) (B), local

entropy (P 5 0.0006) (C), and regional inten-

sity variability (P 5 0.0002) (D).

FIGURE 4. Example of different extracted features and associated values for tumors of CRs, PRs, and NRs (results are normalized in [0–1]

interval using range of observed values for local and regional parameters).
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computed using M1 matrices (Table 3). All these features
offered statistically significant differentiation of NRs and
responders (considering both CR and PR).
Regarding local features, the busyness and contrast

computed on M3 matrices were not statistically significant
predictive factors of response, but the coarseness, reflecting
the local granularity of the tumor functional image, was
found to be significant (P 5 0.0002). Among the local
measures of functional tumor characteristics computed
using M1 matrices, the measure of local entropy was the
only measure allowing statistically significant differentia-
tion of all 3 patient groups (P 5 0.0006, Fig. 3).
Because the features computed on M2 and M4 matrices,

used to highlight regional variability in the 18F-FDG dis-
tribution, were strongly correlated (r . 0.9), only features
based on M4 were used in the subsequent analysis.
Regional measures of tumor characteristics extracted from
these M4 matrices, such as the variability in the size and the
intensity of identified homogeneous tumor zones, were sta-
tistically significant in predicting therapy response (P 5
0.0002), allowing the differentiation of all 3 patient re-
sponse groups (Fig. 3).
The ROC curve analysis for SUVmax, SUVpeak, local

homogeneity, local entropy, and regional tumor character-
istics such as the variability in size and intensity of identi-
fied homogeneous tumor areas is presented in Figure 5.
Table 3 summarizes the ROC curve analysis results, com-
paring the performance of the different studied parameters
in terms of sensitivity and specificity in, on the one hand,
identifying complete-response patients and, on the other
hand, differentiating responders (PR and CR).
First, based on the ROC curve analysis, textural param-

eters can identify CRs better than can the SUV-based
measurements, as demonstrated by the respective AUCs

(Fig. 5). For example, SUVmax, with an AUC of 0.7,
allowed the identification of CRs, with a maximum sensi-
tivity of 46% and specificity of 91%, using a threshold of 6.
On the other hand, the variability in the size of the uniform
tumor zones (AUC, 0.85) allowed for the extraction of CR
patients with the best accuracy (sensitivity, 92%; specific-
ity, 69%).

Second, as Figure 5 shows, textural features were most
efficient in identifying responders (CRs and PRs), whereas
for the same task the performance of SUV measurements
was limited. For the differentiation of the patient respond-
ers, the AUC was less than 0.6 for the different SUV
parameters, compared with an AUC of more than 0.82
for the use of the texture parameters. For example, the
AUC of the SUVmax was 0.59, allowing a sensitivity of
53% and specificity of 73% in the differentiation of res-
ponders using an optimal threshold of 9.1. On the other
hand, for the same task the local homogeneity had a spe-
cificity and sensitivity of 88% and 73%, respectively
(AUC, 0.89).

DISCUSSION

Assessment of tumor response to therapy plays a central
role in drug development and patient clinical management.
Currently, response is mainly assessed by measuring
anatomic tumor size and classifying tumor shrinkage
according to standard criteria. Because metabolic changes
often occur before morphologic changes, metabolic imag-
ing appears to be a valuable tool for monitoring various
treatments in different cancer types. Within this context,
18F-FDG PET has shown promising results in assessing
response to therapy and prognosis. In esophageal cancer,
quantitative changes in 18F-FDG uptake at 2 wk after the
start of therapy have been shown to correlate well with

TABLE 3
Sensitivity and Specificity (Along with Corresponding 95% Confidence Intervals) of 3 SUV-Based

Measurements, 2 Cooccurrence Features, and 2 Size-Zone Features

Comparison Parameters Sensitivity (%) 95% confidence interval (%) Specificity (%) 95% confidence interval (%)

NR vs. PR 1 CR SUVmax 53 35.1–70.2 73 39.0–94.0

SUVmean 71 52.5–84.9 45 16.7–76.6
SUVpeak 56 37.9–72.8 73 39.0–94.0

Local homogeneity 88 71.8–96.6 73 39.0–94.0

Local entropy 79 61.1–91.0 82 48.2–97.7

Size-zone 76 58.8–89.8 91 58.7–99.8
Intensity variability 76 58.7–89.3 91 58.7–99.8

NR 1 PR vs. CR SUVmax 46 19.2–74.9 91 75.0–98.0

SUVmean 62 31.6–86.1 81 63.6–92.8

SUVpeak 62 31.6–86.1 81 63.6–92.8
Local homogeneity 92 61.5–99.8 56 37.7–73.6

Local entropy 92 61.5–99.8 69 50.0–83.9

Size-zone 92 64.0–99.8 69 50.0–83.9

Intensity variability 85 54.6–98.1 75 56.6–88.5

Data in top part of table are evaluation of parameters to distinguish PR or CR; data on bottom part of table are evaluation of parameters
to differentiate CRs.
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subsequent tumor shrinkage and patient survival (4). This
approach still has limitations, especially if patients undergo
radiotherapy treatment. Hautzel et al. have shown that even
low irradiation may enhance tumor uptake, and inflamma-
tory changes may contribute early to this increase, yielding
inaccurate information about treatment response (31).
Within the same context, induced ulceration may also
impair response assessment using PET (32).
On the other hand, the prediction of response before

treatment initiation may be of great interest to the optimi-
zation of patient management. With such an endpoint, few
authors have studied the predictive value of initial 18F-FDG
uptake for therapy response. Rizk et al. reported an SUVmax

of more than 4.5 to be a reliable predictor of pathologic
response (9), whereas Javeri et al. (8) demonstrated in a
larger group of patients a trend of greater rate of response
obtained after combined chemoradiotherapy in patients who
had an initial SUVmax higher than 10. Similarly in our study,
initial SUVmean, SUVmax, and SUVpeak were also predictors
of complete response. However, in general these indices did
not allow differentiating NRs from PRs, a distinction that
could be useful for patient management. For instance, within
the patient population of our study the identification of PRs
before any treatment could allow the definition of a subpo-
pulation for which the use of conventional radiochemother-
apy should be directly replaced by another option, such as a
new targeted therapy.

A few studies have already focused on the link between
image analysis and tumor biologic parameters. Gillies et al.
(33) suggested that imaging can longitudinally characterize
spatial variations in the tumor phenotype and its microen-
vironment so that the system dynamics over time can be
quantitatively captured. Segal et al. (22) showed that con-
trast-enhanced CT image characteristics (such as texture
heterogeneity score or estimated percentage of necrosis)
correlate with most of the liver global gene expression pro-
files, revealing cell proliferation, liver synthetic function, and
patient prognosis. Within the same context, Diehn et al. (34)
mapped neuroimaging parameters with gene-expression pat-
terns in glioblastoma, whereas Strauss et al. (35) combined
dynamic PET kinetic parameters with gene-array techniques.
Finally, Eary et al. (24) previously demonstrated that a glob-
ally assessed 18F-FDG distribution heterogeneity in sarcoma
is a potential prognostic factor.

In our study, the value of textural feature analysis was
explored on the pretreatment 18F-FDG PET scans for pre-
dicting response to combined chemoradiotherapy. Global
tumor metabolic features based on the intensity histogram
were computed directly on the original image. As such,
they were therefore highly correlated with 18F-FDG uptake,
which could explain why these textures could only predict
CRs but could not distinguish NRs from PRs, similar to the
SUV measurements. The other features evaluated in this
study highlight tumor heterogeneity at a local and regional
level, characterized in several ways, depending on the type
of matrix used and the kind of feature computed on this
matrix. Consequently, whereas a single feature cannot be
directly linked to a specific biologic process, one could
assume that a combination of textural parameters may be
closely related to underlying physiologic processes, such as
vascularization, perfusion, tumor aggressiveness, or hyp-
oxia (18,19). Therefore textural features could be correlated
to physiologic processes related to response to combined
radiochemotherapy. For example, one could reasonably
expect that a tumor exhibiting a heterogeneous, compared
with a homogeneous, 18F-FDG distribution may respond
less favorably to a uniformly distributed radiotherapy dose.
We could also hypothesize that underlying neoangiogene-
sis contributes to tumor 18F-FDG uptake heterogeneity,

FIGURE 5. ROC curves for SUVmax, SUVmean, SUVpeak, local

homogeneity, uniform tumor areas, intensity variability, and size-
zone variability for identification of CRs (A) and PRs or CRs (B).
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although it is now widely accepted that neoangiogenesis is
associated with reduced effectiveness of conventional che-
motherapy. However, the exact relationship between the
proposed image-derived indices and underlying tumor biol-
ogy can be established only on carefully designed prospec-
tive studies.
In this work, the cooccurrence features analyzing inter-

relationships between pairs of voxels, corresponding to the
characterization of local nonuniformities, were able to sig-
nificantly differentiate NRs from other patient groups. The
measurement of local homogeneity and entropy gave the
best results for this class of textures. Although in most
cases responders (PR and CR) were associated with greater
local heterogeneity than NRs, these features were less
efficient in discriminating CRs from PRs.
The 2 features facilitating the best patient stratification

were both associated with regional tumor characterization.
Both the intensity and the size variability of uniform zones
identified within the tumor, representing a measure of
regional tumor heterogeneity, were significant predictors of
response to therapy. ROC curve analysis showed that the
performance of these features is similar to that of cooccur-
rence features in identifying NRs, but they can in addition
distinguish between PRs and CRs with higher sensitivity
and specificity than SUV measurements. These results
suggest that regional (in terms of intensity and size of
homogeneous areas) rather than local heterogeneity offers a
superior differentiation of esophageal carcinoma patient
groups in terms of response to combined chemoradiother-
apy treatment than does any other global tumor metabolic
activity measurement currently used in routine clinical
practice, such as SUVs.
A limitation of the present study is that it is retrospective,

considering a relatively small patient cohort. Therefore, the
potential of new image-derived indices characterizing
tumor 18F-FDG distribution for prediction of response to
therapy studies demonstrated in this work needs to be vali-
dated by a prospective study on a larger patient cohort.

CONCLUSION

We have demonstrated that textural analysis of the
intratumor tracer uptake heterogeneity on baseline 18F-
FDG PET scans can predict response to combined chemo-
radiation treatment in esophageal cancer. Textural features
derived from cooccurrence matrices strongly differentiated
NRs from PRs, providing useful information for personal-
izing patient management. These results suggest that
regional and local characterization of 18F-FDG PET tracer
heterogeneity in tumors, exploring processes underlying the
18F-FDG uptake and distribution within tumors, are more
powerful than global measurements currently used in clin-
ical practice, holding the potential to revolutionize the pre-
dictive role of PET in cancer treatment. Finally, although
only 18F-FDG images in esophageal cancer have been con-
sidered here, clearly the same indices applied in other PET
radiotracer studies in the same or different tumor types may

help create even stronger links between imaging and under-
lying tumor biology.
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