
"C-flumazenil (FMZ) and noted that the distribution volume

(receptor binding) of FMZ was not affected in the parietal
cortex where metabolic defect was detected with FDG in
Alzheimer's subjects. The reason for the difference between the

FMZ binding data and our data is unclear. The difference in
binding characteristics between the two ligands, IMZ and FMZ
must be considered. For example, IMZ has a tenfold higher
affinity for its binding than FMZ at 37Â°Cand the nonspecific

uptake of FMZ is much higher than that for IMZ (24).
We could not include an adequate number of normal subjects,

since all the patients were studied as a part of a Phase II or III
clinical trial of IMZ in Japan (25,26). Therefore, to assess the
diagnostic value of this new radiopharmaceutical, a greater
number of normal individuals should be studied.

CONCLUSION
IMZ-SPECT may be useful for the evaluation of the disease.

The decline in Bz receptor density might provide a more
accurate estimate of disease progression than reduction in
rCBF.
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Brain Dopamine Transporter in Spontaneously
Hypertensive Rats
Yoshiyuki Watanabe, Masahiro Fujita, Yasushi Ito, Tomoya Okada, Hideo Kusuoka and Tsunehiko Nishimura
Division of Tracer Kinetics. Biomedicai Research Center Osaka University Medical School. Osaka, Japan

The brain dopamine system plays an important role in the develop
ment of hypertension. Methods: The amounts of the dopamine
transporter (DAT) and dopamine D1 and D2 receptors in the brain
were assessed by in vitro autoradiography with the ligands [125l]/3-
CIT, [125I]SCH23982 and [1Z5l]iodospiperone, respectively. Changes

in this transporter and the two receptors were evaluated in sponta
neously hypertensive (SH) rats and control (Wistar-Kyoto) rats at the
prehypertensive (2-wk-old, n = 5) and posthypertensive (15-wk-old,
n = 5) stages. Results: The ÃŸ-CITbinding for the DAT was increased
significantly in the caudate-putamen (CPu) of SH rats compared with
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that of Wistar-Kyoto (WKY) rats at both pre- and posthypertensive
stages. In the evaluation of the lateral-to-medial CPu, the ÃŸ-CIT
binding on the lateral side was significantly higher than that on the
medial side in SH rats at 2 wk. The SCH23982 binding for D1 receptor
was increased significantly in CPu at posthypertensive SH rats.
Conclusion: Increased DAT was found before the development of
hypertension, and the increased DAT and D1 receptor were found at
posthypertensive SH rats. The abnormal dopamine system contrib
utes the development of hypertension, suggesting the possibility of
diagnostic imaging for the essential hypertension.

Key Words: hypertension;Â¡odine-125-ÃŸ-CIT;dopamine transporter;
dopamine receptor
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TABLE 1
General Characteristics of Experimental Rats

FIGURE 1. ROI in a striatal section where specific binding of the lateral or
medial CPu was measured. This selected section was located at about 1.0
mm rostral from the bregma. CPu = caudate-putamen; NAc = nucleus
accumbens; L = ROI of the lateral CPu; M = ROI of the medial CPu.

J.he brain dopamine systems, especially the nigrostriatal path
way, play a direct role in the regulation of blood pressure and
the development of hypertension. Chemical or electrolytic
lesions of the nigrostriatal dopamine system in spontaneously
hypertensive (SH) rats during the prehypertensive stage atten
uate the development of hypertension (1,2). Moreover, elevated
tyrosine hydroxylase activity (3) and higher dihydroxypheny-
lacetic acid (DOPAC) concentrations (4,5) have been reported
in the striatum of SH rats. These results suggest that the
nigrostriatal dopamine system in SH rats is hyperactive and that
this hyperactivity causes the development of hypertension.

SH rats are generally considered to be a suitable experimental
model for the study of human essential hypertension (6) and to
have some similarities in the dysfunction of the central dopa
mine system. The dopamine D2 receptor agonist, bromocrip-
tine, decreases blood pressure in SH rats and in patients with
essential hypertension, and both SH rats and some patients with
essential hypertension show high plasma prolactin levels (7,8).

To elucidate the hypertension-related alteration of dopamine
systems in brain, we compared the amounts of DAT, D1 and D2
receptors between SH rats and control (Wistar-Kyoto) rats at
the prehypertensive stage (2-wk-old) and after the development
of hypertension ( 15-wk-old).

MATERIALS AND METHODS
Male SH rats and Wistar-Kyoto (WKY) rats at age 2 or 15 wk

were examined. The rats were housed under a constant light-dark
cycle with standard pellet food and tap water available ad libitum.
Blood pressure was measured on conscious animals with a tail-cuff
method.

After anesthetization using sodium pentobarbital (50 mg/kg
weight intraperitoneally), the brain was removed rapidly and frozen
on a cryostat chuck using crushed dry ice. In a cryostat microtome,
20-/xm sections were cut and mounted onto silane-coated slides.
The glass slides were stored at â€”80Â°Cuntil use.

Autoradiographic Investigations
['25I]2ÃŸ-carbomethoxy-3ÃŸ-(4-iodophenyl)tropane (ÃŸ-CIT,also

referred to as RTI-55: 2200 Ci/mmole; Dupont-NEN, Boston, MA)
was used to label DAT in the rat brain as described previously (9)
with slight modification. The slides were preincubated in 50 mM
Tris-HCl buffer (pH 7.4) containing 100 mM NaCl at 4Â°Cfor 10

2-wk-old 15-wk-old

WKY SHR WKY SHR

Body weight 32.0 Â±1.0 26.0 Â±0.9* 315 Â±1.0 302 Â±2.1*

(9)
Blood pressure â€” â€” 125 Â±5.2 172 Â±2.1*

(mmHg)

*p < 0.005 vs WKY.

Each value is the mean Â±s.e.m. in five rats.
The blood pressure of 2-wk-old rats was not available because they were

too small to measure by tail-cuff method.

sec and incubated in the buffer containing 100 pA/ [125I]ÃŸ-CITand

100 nM clomipramine (Research BiomÃ©dical,Natick, MA) for 2 hr
at 4Â°Cto measure total binding. Nonspecific binding was evaluated
by including 300 mM (â€”)-cocaine in incubation media. Clomipra-

mine was added to displace serotonin transporters. Incubation was
terminated by two consecutive 1-min washes in fresh ice-cold
buffer and dipped in ice-cold distilled water. In this study, the
concentration of ( â€”)-cocaine and clomipramine was diluted to
one-third and one-hundredth, respectively. The preliminary study
showed the good displacement of dopamine and serotonin trans
porters by diluted (â€”(-cocaineor clomipramine buffers.

Autoradiography with [125I]SCH23982 (R( + )-8[125I]-iodo-7-

hydroxy -2,3,4,5 - tetrahydro -3-methy1- 5-pheny1-1H -3-benzazepine
2200 Ci/mmole; Dupon-NEN, Boston, MA) was carried out as
described previously (70). In brief, the slides were incubated at
22Â°Cfor 30 min in 50 mM Tris-HCl buffer (pH 7.4) containing 120

mM NaCl, 5 mM KC1, 2 mM CaCl2, 1 mM MgCU, 50 nM
ketanserin (Research Biochemical, Natick, MA) and 100 pM
[125I]SCH23982. Nonspecific binding was evaluated by including

100 nM unlabeled SCH23982 (Research Biochemical, Natick,
MA) in incubation media. Ketanserin was used to displace the
binding to serotonin receptors. After an incubation period, the
slides were rinsed in ice-cold buffer twice for 5 min each and
washed with distilled water for a few seconds.

Autoradiography with [125I]iodospiperone (2200 Ci/mmole; Du

pon-NEN, Boston, MA) was performed as follows. The slides were
incubated at 22Â°Cfor 60 min in 50 mM Tris-HCl (pH 7.4)
containing 100 mM NaCl, 100 nM ketanserin and 250 pM [I25l]io-

dospiperone. Nonspecific binding was assessed by including 250

%f
*f ff

C D 2mm

RGURE 2. Autoradiograms of [125I]0-CITin the striatum. A = 2-wk-old SH
rats; B = 15-wk-old SH rats; C = 2-wk-old WKY rats; D = 15-wk-old WKY

rats.
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TABLE 2
lodine-125-ÃŸ-CIT Binding Density in the Brain

2-wk-old 15-wk-old

WKY SHR WKY SHR

Iodine-125-ÃŸ-CIT (fmole/mg tissue)
Caudate-Putamen 2.12 Â±0.07

Lateral 2.53 Â±0.12
Medial 2.48 Â±0.11
NucÃ­.Accumbens 1.81 Â±0.09

2.33 Â±0.07*

2.84 Â±0.12*

2.67 Â±0.11
1.92 Â±0.06

3.75 Â±0.11
4.26 Â±0.17*

3.93 Â±0.16
2.77 Â±0.14

4.37 Â±0.11t
4.88 Â±0.18**
4.41 Â±0.16*

3.15 Â±0.15

*p < 0.05

*p < 0.005 vs. WKY
*p < 0.005 vs. medial side

Each value is the mean Â±s.e.m. in five rats.

nM spiperone hydrochloride (Research Biochemical, Natick, MA)
in incubation media. Ketanserin was added to prevent [125I]io-

dospiperone from binding to serotonin receptors. The slides were
washed twice with ice-cold buffer for 5 min each and washed once
with distilled water for a few seconds.

Image Analysis
The labeled tissues along with [125I]microscales standard (Am-

ersham, Buckinghamshire, England) were placed against sheets of
imaging film (X-OMAT AR, Kodak, Tokyo, Japan) in radiograph
cassettes. After 12 to 48 hr exposure, films were removed and
developed. The films were quantified using a computer-based
analysis system (MC ID Image Analysis System, Imaging Re
search, St. Catharines, Ontario, Canada). The film optical densities
were converted to fmole/mg tissue using a standard curve gener
ated by the [I25l]microscale. Two in vitro autoradiography exper

iments were performed with each radioligand and their average
value was calculated.

The binding density was obtained over the whole area of the
caudate-putamen (CPu) and the nucleus accumbens (NAc). The
binding densities in five sections in each 2-wk-old rat and six
sections in each 15-wk-old rat were measured. Two sections in the
central area (in the rostral-caudal directions) of CPu were selected
to compare the amounts of each radioligand in the lateral and the
medial CPu. Two rectangular ROIs were selected in the lateral and
the medial CPu (Fig. 1). The two selected sections were contiguous
with Plates 14 or 17 in the atlas by Paxinos and Watson (11).

Statistical Analysis
Data are presented as mean Â±s.e.m. The binding densities in SH

rats were compared to those in WKY rats using the Mann-Whitney
U test. The values in the lateral CPu were compared to those in the
medial CPu using Wilcoxon signed-ranks test. The probability
level of less than 0.05 was considered statistically significant.

RESULTS
The age-related changes in body weight and blood pressure

are shown in Table 1.

Specific Binding of lodine-125-ÃŸ-CIT
Figure 2 shows the binding of [125I]ÃŸ-CITin the brains of SH

rats and WKY rats. Compared to WKY rats (C, D), SH rats (A,
B) showed higher [125I]ÃŸ-CITbinding in CPu at both 2 and 15
wk. The [125I]/3-CIT binding sites in CPu were homogeneous

and did not show different distributions in the striosome and
matrix compartments. Table 2 summarizes the quantitative
specific binding of [125I]ÃŸ-CITin CPu and NAc. The binding

density in SH rats was significantly increased in CPu at 2 wk
(p < 0.05) and 15 wk (p < 0.005) compared to WKY rats.

Compared to the medial CPu, the [125I]ÃŸ-CITbinding in the

lateral CPu was significantly greater in 15-wk-old rats of both
strains (p < 0.005). In the 2-wk-old rats, this lateral-to-medial
gradient was found only in SH rats (p < 0.005) but not in WKY
rats. In both the lateral and the medial CPu, the [l25I]ÃŸ-CIT

TABLE 3
lodine-125-SCH23982 and lodine-125-lodospiperone Binding Density in the Brain

2-wk-old 15-wk-old

WKY SHR WKY SHR

lodine-125-SCH23982 (fmole/mg tissue)
Caudate-Putamen 3.70 Â±0.07LateralMedialNucÃ­,

accumbens3.91

Â±0.103.78
Â±0.093.57
Â±0.073.67

Â±0.073.92
Â±0.113.70

Â±0.093.47
Â±0.113.36

Â±0.083.19
Â±0.113.12

Â±0.092.77
Â±0.143.78

Â±0.1Of3.60
Â±0.12**3.45
Â±0.10*3.15

Â±0.15

lodine-125-iodospiperone (fmole/mg tissue)
Caudate-Putamen 6.63 Â±0.27
Lateral 8.31 Â±0.36*

Medial 6.53 Â±0.31
NucÃ­,accumbens 4.59 Â±0.33

6.23 Â±0.29
7.93 Â±0.47*

6.55 Â±0.42
4.63 Â±0.49

6.69 Â±0.32
8.37 Â±0.53*

7.12 Â±0.43
6.19 Â±0.46

7.35 Â±0.36
7.92 Â±0.52*

6.64 Â±0.47
6.00 Â±0.54

*p < 0.05

fp < 0.005 vs. WKY
*p < 0.005 vs. medial side

Each value is the mean Â±s.e.m. in five rats.
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binding in SH rats was significantly greater than that in WKY
rats at 15 wk (p < 0.05).

Specific Binding of lodine-125 SCH23982 and
Iodine-125 lodospiperone

Table 3 summarizes the quantitative specific binding of
[125I]SCH23982 and [I25l]iodospiperone in CPu and NAc. The
[125I]SCH23982 binding in CPu was significantly increased in

SH rats only at age 15 wk (p < 0.005) compared to WKY rats.
There was no significant difference between SH rats and WKY
rats at either age in [125I]iodospiperone binding. In NAc, the

binding densities showed no difference in the two strains for
either tracer.

In both the lateral and the medial CPu, the [125I]SCH23982

binding in 15-wk-old SH rats was significantly greater com
pared to WKY rats (p < 0.05). In addition, the lateral-to-medial
gradient of [I25I]SCH23982 binding was detected only in
15-wk-old SH rats (p < 0.005). The [125I]iodospiperone bind

ing in the lateral CPu was significantly greater than that in the
medial CPu at both ages and in both strains (p < 0.005).

DISCUSSION
This study demonstrates the increased DAT in the CPu of

both pre- and posthypertensive SH rats. In the prehypertensive
SH rats, the difference between SH rats and WKY rats was
found only by the ligand of DAT. That is, the increase of total
amount in CPu and the expression of lateral-to-medial gradient.
These results suggest that these changes may be inherent and
pathogenetic to hypertension and indicate that it may be
possible to detect an abnormality in DAT with in vivo imaging
even before the development of hypertension.

SH rats were bred from the WKY rats by selective brother-
to-sister inbreeding and uniformly result in offspring that
develop hypertension (72). SH rats are similar to humans with
respect to essential hypertension in several ways. Both have
apparent onsets very early in life. Their elevated arterial
pressure is mediated through a slow and progressively increased
total peripheral resistance that demands cardiac and vascular
adaptation (13).

In contrast to our findings, it was reported that there was no
significant difference in DAT labeled with [3H]mazindol be

tween adult age-matched SH rats and Sprague-Dawley rats (14).
The discrepancy between two studies may be due to the
differences in radioligands and in the strain selected as the
normotensive rat. Iodine-125-ÃŸ-CIT may be different from
[3H]mazindol in the binding site and the affinity to DAT. The
[3H]mazindol binding in the striatum is differentially distrib

uted in the striosome and matrix compartments (75). This
inhomogeneity in the striatum is not observed in [125I]ÃŸ-CIT
(9,16,17). Furthermore, [125I]ÃŸ-CITbinds to DAT at both high-

and low-affinity sites in the striatum, similar to cocaine (76),
but [3H]mazindol binds to DAT only at one high-affinity

binding site (18).
The lateral-to-medial gradient of DAT in CPu was found only

in SH rats at age 2 wk but in both strains at 15 wk (Table 2). The
lateral or medial portions of CPu differ in neurogenesis and in
the development of dopaminergic innervation (19,20). In the
striatum, the ingrowth of the mesencephalo-prosencephalic
dopaminergic fibers is predominantly located laterally. From
lateral portion, the outgrowth of the dopaminergic fibers pro
ceeds in the medial direction (79). Thus, early expression of the
lateral-to-medial gradient in DAT indicates an abnormal onto-
genic development of the dopamine system in SH rats.

There are many previous reports describing dopamine Dl or
D2 receptor binding studies in SH rats, but these results are

confusing. Some researchers reported an increase of D1 or D2
receptor densities in the striatum of SH rats (14,21-23),

whereas others reported that there was no difference between
SH and WKY rats (24-26). The discrepancies in Dl and D2
receptor data have been attributed to the difference of radioli
gands and experimental procedures and to genetic drift resulting
in biological variability among the substrains of SH rats (27).

Iodine-125-ÃŸ-CIT has been used as a tracer for SPECT
studies in baboons and humans (28-33). In recent years, the in
vivo tracer kinetics (34) or age-related decline (35) in human
striatum of [125I]ÃŸ-CIThave been investigated. Iodine-125-ÃŸ-

CIT is a promising SPECT agent for imaging the DAT in
humans. Our study suggests the possibility of diagnostic imag
ing for essential hypertension.

CONCLUSION
The increased DAT was found before the development of

hypertension in SH rats, and increased DAT and Dl receptor
were found in posthypertensive SH rats. These results suggest
that the dopamine system in the striatum plays an important role
in the pathogenesis and development of hypertension.
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FIRST IMPRESSIONS
Technetium-99m-Macroaggregated Albumin in Superior Vena Cavai Obstruction

Figure 1.

SVC

I IV

Figure 2.

PURPOSE
A 19-yr-old girl with acute lymphocytic leukemia and a known clot around
her porta-cath central line was studied for suspected pulmonary embolism
because of chest pain. After right arm intravenous injection of Tc-MAA,

the perfusion lung scan (Fig. 1, anterior view) showed abnormal tracer
activity below the diaphragm, in the left lobe of the liver, suggestive of
superior vena cavai (SVC) obstruction with collateral drainage into the
systemic-portal venous blood flow to the left lobe of the liver. Right arm

venogram done the same day confirmed SVC obstruction with collaterals
and flow via the internal thoracic vein.

The demonstration of the left lobe of the liver suggests that the main
route for collateral drainage, in this patient, is through the internal thoracic
vein, the superior epigastric veins, the periumbilical venous channels and
the umbilical and/or paraumbilical veins that drain into the left branch of the
portal vein (Fig. 2, where AV = axillary vein, BV = brachial vein, EIV =
external iliac vein, IEV = inferior epigastric vein, ITV = internal thoracic
vein, IVC = inferior vena cava, L = left, LBPV = left branch of portal vein,
PUV = paraumbilical vein, R = right, RBPV = right branch of portal vein,
SEV = superior epigastric vein, SV = subclavian vein, SVC = superior vena
cava and site of obstruction, U = umbilicus and periumbilical venous
channels, UV = umbilical vein) and give rise to the tracer activity seen in

the left lobe of the liver. In addition, the appearance of the liver also
suggests that the major deep collateral flow through the azygos ascending
lumbar pathway is less well developed.

TRACER
Technetium-99m-macroaggregatedalbumin,3mCi(111 MBq)

ROUTE OF ADMINISTRATION
Intravenous, right arm

TIME AFTER INJECTION
Ten minutes

INSTRUMENTATION
General Electric Starcam 3000 LFOV gamma camera with LEHR
collimator

CONTRIBUTORS
Haim Golan, Judith M. Ash, Peter G. Chait and David L. Gilday, Division
of Nuclear Medicine, Department of Diagnostic Imaging, The Hospital for
Sick Children, Medicine, Toronto, Ontario, Canada
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