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Autopsy of a Cadaver Containing Strontium-89-
Chloride
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An autopsy was performed on a patient who died after receiving
89Sr-chloride for treatment of bone pain from metastatic prostate

carcinoma. Coordination between nuclear medicine physicians,
radiation safety division personnel and pathologists resulted in
minimal radiation exposure and the acquisition of dosimetry data.
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biodistribution studies
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Ã¶trontium-89-chloride has proven efficacy in the treatment of
bone pain associated with metastatic prostate (1,2) and meta
static breast carcinoma (1-3). Patients who receive 89Sr therapy

have advanced metastatic disease, and many are markedly
debilitated. Although K9Sr-chloride is generally reserved for

patients who have a life expectancy of at least a few months,
occasional deaths may occur soon after treatment.
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CASE REPORT
An 83-yr-old man with Stage C prostate carcinoma and pain

associated with widespread bony mÃ©tastases[confirmed by bone
scan (Fig. 1)] was referred to the nuclear medicine division for
89Sr-chloride therapy. The patient had no other known significant

medical problems. He was treated with 162.1 MBq (4.38 mCi)
89Sr-chloride [T[l/2], 50.5 days, beta Emax 1.463 MeV(100%)],

intravenously, given over 2 min. Because of difficulty adequately
managing the patient's pain at home, prior arrangements had been
made for the patient's admission to the hospital after administration

of strontium. The patient was therefore admitted to the hospital, in
stable condition, after his discharge from the nuclear medicine
clinic. He died approximately 4 days later.

The body was not moved until the radiation safety staff arrived
and performed appropriate safety surveys with a thin window
"pancake" Geiger-Mueller detector to determine levels of contam

ination. The body was then tagged, wrapped in bed linens,
transported to the morgue using universal precautions and autop-
sied.

Two pathologists and a technologist conducted the autopsy 1 day
after the patient's death (i.e., 5 days after 89Sr treatment). Before

proceeding, each member of the pathology staff donned two pairs
of standard latex surgical gloves, a standard polyester surgical
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TABLE 1
Activity and Concentration Measurements

POS
ANT

FIGURE 1. Whole-body bone scan performed 3 hr after the intravenous
administration of ""Tc-MDP.

gown, a waterproof apron (worn over the surgical gown), a surgical
mask, a plastic face shield and paper shoe coverings. Additionally,
Pathologist 1 wore a cut-resistant nylon mesh glove on her left
hand, and Pathologist 2 wore one of these gloves on each hand.
Each of the people performing the autopsy was also issued a
whole-body dosimeter (consisting of four TLD chips and filters)
designed to record skin exposures and deep dose equivalent, which
each wore on his or her surgical gown collar (under the above-
noted multiple layers of clothing). Each member of the pathology
staff also wore a TLD finger ring on each hand under the gloves.
A standard GM detector with a thin window was used to make
measurements of the patient and his organs, the autopsy equipment
and the background.

DISCUSSION
Our detector system, the ANPDR-27 (a standard GM detector

with an open, thin, mica end window) provided readings in
mr/hr. Although these mr/hr measurements were useful for
comparing the relative amount of activity at various locations
(assuming beta radiation from or close to the surface of the
organ or material being measured is representative of the
concentration), measurements of actual activity concentration
would also be of interest. We therefore calibrated our detector
to allow conversion of a mr/hr reading to an activity concen
tration in ju,Ci/cc. This was done by preparing a 3000-ml dilute
solution of 89Sr Cl (0.049 ;u,Ci/cc) in water and obtaining

Location or organ

5-cm

measurement
distance

mr/hr Â¿Â¿Ci/cc

5 cm below xiphoid (omentum in place) 0.40 0.02
5 cm below xiphoid (omentum removed) 0.35 0.02
at umbilicus (omentum in place) 0.12 0.01
at umbilicus (omentum removed) 0.42 0.05
Lumbar spine metastasis (organs removed) 1.90 0.21
Right lung 0.48 0.05
Left lung 0.41 0.02
Heart 0.20 0.03
Liver 0.30 0.02
Spleen 0.16 0.02
Right kidney 0.20 0.02
Lett kidney 0.22 0.02
Bladder 0.30 0.03
Small bowel 0.35 0.40
Large bowel 0.36 0.04
Stool 2.30 0.26
Supraorbital skull 0.80 0.09

readings with the GM detector at 5 cm from the surface of the
solution through a plastic container. We assumed the cumula
tive bremsstrahlung effect of plastic and water are similar to
tissue. This dilution was chosen empirically to give detector
readings in the same range as those recorded from the cadaver.
A 1-mr/hr reading was obtained from this solution. This number
was then used to obtain a crude approximation of the 89Sr

concentration in each of the organs and areas measured. During
the autopsy, which lasted approximately 2 hr, measurements
were made at various locations above the surface of the body
and inside the body cavity. Additionally, a measurement was
taken at 5 cm above the surface of each organ, after the organ
was removed and isolated. The results of these measurements
are provided in Table 1. The data indicate that 89Sr is fairly

evenly distributed throughout the soft tissue organs of the body.
The bone and stool displayed significantly higher activity
concentrations than did the soft-tissue organs. The large meta-
static deposit in the lumbar spine was found to have a
concentration of 89Sr over twice that of normal bone in the

skull. This latter observation correlates well with observations
made by Breen et al. (7) concerning the ratio of 89Sr concen

tration in metastatic lesions compared with normal bone. The
relatively large fecal concentration was also anticipated in light
of the fact that approximately one-third of the Sr clearance
occurs via the bowel (8).

Personnel whole-body (skin and deep) and hand exposures
(measured in rem) received during the autopsy were "0.000" for

all autopsy participants. This can be explained by analysis of
89Sr biodistribution. Total retention of 89Sr after 4 days is

estimated to be approximately 50%, with approximately 1%
being in the extracellular fluids. Except for that in the extracel
lular fluids, the 89Sr is assumed to be bound to bone. If the
unbound 89Sr is fairly evenly distributed, we would not have

expected measurements of the radioisotope in the various
organs to differ significantly; and this is what was observed.
Based on these same estimates and assumptions, approximately
200 ju,Ci were expected to be distributed outside of the bone,
giving a concentration of approximately 0.07 ju.Ci/cc. This is in
fair agreement with the concentrations determined from our
crude analysis (i.e., 0.02-0.05 Â¡iCi/cc). Because the beta

radiation cannot, for the most part, penetrate more than 0.8 cm
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in tissue, exposure to the staff would be from activity located
within the first 0.8 cm of the body and would represent a
potential exposure hazard only to their hands. Assuming 25% of
the 200 /iCi of activity is distributed within the first 0.8 cm of
the peritoneal wall, and the hands remain in the cavity for a total
of 1 hr (a significant overestimation), an exposure of 0.05
mCi-hr would result. Using this information and data from
NCRP Handbook No. 37 (4) for radiation dosimetry for 32P
{assuming that 89Sr is roughly equivalent to 32P [T1/2-14.3

days, beta Emax 1.7 MeV (100%)1| in terms of dosimetry
(when in fact, the beta energy in Sr is less) and that the
pathology staff wore two sets of autopsy gloves, the calculated
dose to the hands would be 15 mrem, and the whole-body dose
would be significantly less. Fifteen millirem is below the
minimum detection level for the dosimeters worn by the
pathology staff, and thus the readings of "0.000" are expected.

CONCLUSION
We have documented that an autopsy can be safely per

formed on a patient who dies within a short interval after
receiving a standard dose of 8l)Sr-chloride. Additionally, our

measurements have corroborated previously published kinetic
and biodistribution data concerning X9Sr-chloride.
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Effect of Hyperglycemia on In Vitro Tumor
Uptake of Tritiated FDG, Thymidine,
L-Methionine and L-Leucine
Tatsuo Torizuka, Anaira C. Clavo and Richard L. Wahl
Division of Nuclear Medicine, Departments of Internal Medicine and Radiology, University of Michigan,
Ann Arbor, Michigan

We have previously demonstrated in vitro and in vivo that tumor
uptake of FDG is markedly diminished by acute hyperglycemia. This
in vitro study was designed to determine if tumor uptake of PET
tracers (FDG, thymidine, L-methionine and L-leucine) is affected by
acute or chronic hyperglycemia. Methods: Human ovarian adeno-
carcinoma (HTB 77IP3) cells were grown in media containing 100 or
300 mg/dl of glucose. At 7,20,38,51 and 72 days after initial culture,
uptake of 3H-labeled FDG, thymidine, L-methionine and L-leucine

into the cells was determined in the presence of 100 or 300 mg/dl of
glucose. Results: With acute hyperglycemia (300 mg/dl of glucose),
the percent decreases in uptake of FDG, thymidine, methionine and
leucine were 76.7%, 22.4%, 7.4% and 11.1%, respectively, as
compared to assay at 100 mg/dl of glucose (mean day 51 and day
72 data). Significant decreases were observed in FDG and thymi
dine uptake with acute hyperglycemia (p < 0.0005). When cells
grown at 300 mg/dl of glucose for 51 and 72 days were assayed at
100 mg/dl of glucose, the mean percent decreases in uptake of
these tracers were 10.4%, 7.8%, 8.0% and 16.8%, respectively, as
compared to cells grown and assayed at 100 mg/dl of glucose. No
significant decrease was observed in tumor uptake of these tracers,
except for leucine (p < 0.05). Conclusion: These human adenocar-
cinoma cells do not significantly change FDG uptake with chronic
hyperglycemia while acute hyperglycemia markedly reduces uptake
of FDG and thymidine. Neither methionine nor leucine uptake is
significantly affected by acute hyperglycemia. To optimally evaluate
tumor biology by PET, the fasting state seems necessary for FDG
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and thymidine studies, while methionine or leucine appears more
suitable for hyperglycÃ©miepatients.
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K:revious in vitro and in vivo studies have demonstrated the
feasibility of using positron-emitter labeled 2-fluoro-2-deoxy-
D-glucose (FDG) (1-10). Thymidine and amino acids such as
L-methionine and L-leucine are used to detect malignant
lesions, which allow accurate staging of cancers and monitor
therapeutic effects. We have previously reported that tumor
FDG uptake is markedly diminished by acute hyperglycemia in
vitro and in vivo because of direct competition between FDG
and D-glucose for tumor uptake (11,12). In human studies,
FDG-PET images obtained in either the fasting state or the
glucose-loaded state have demonstrated that tumor FDG uptake
is decreased, and thus the PET image quality is impaired when
plasma glucose levels are increased (13,14). These results
suggest that patients should fast before FDG-PET studies and
their plasma glucose concentration needs to be considered when
assessing tumor glucose metabolism (75).

Since many patients are diabetic and some diabetic patients
also have cancers, it is important to determine if chronic
exposure of cancer cells to hyperglycemia may influence
glucose metabolism. In addition, little is known about the effect
of acute or chronic hyperglycemia on tumor uptake of non-
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