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A physiologically based compartmental model for T, and T; metabolism in man was used to
generate time-activity curves for residence of radioiodine in key organs. T4 and T; labeled
with 123, 124, 125| and 31| were studied. Conditions modeled included radioactive iodine
uptake (RAIU) values of 0%, 1%, 5%, 15% and 25%, and RAIU of 15% combined with
various degrees of pharmacologic block of thyroidal RAIU. Using the MIRD ‘‘S’’ tables, rad
doses were generated for each condition. While the shapes of the time-activity curves
varied widely with alterations in physical and biological turnover and with changes in steady-
state due to iodine administration, it was possible to calculate overall effective half-lives for
each organ of interest from the integral of the time-activity curve projected by solution of the
model. This overall effective half-life of the hormone for the body’s exchangeable hormone
compartments correlated well with calculated radiation dose to the thyroid in the unblocked

state. With progressive degrees of iodine block, this correlation persisted, though with
proportionately reduced thyroid radiation doses. Use and manipulation of a compartmental
model, rather than the usual multiexponential model, for radiation dosimetry facilitates
conceptualization and the projection of the effects of interventions such as iodide block.
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'Il:e radioiodinated thyroid hormones thyroxine (T,)
and triiodothyronine (T;) may be used in clinical evalu-
ation though their major human use is in research
settings. Presently, only the iodine-125- (125T) labeled
hormones ['2’I]T4 and ['?I]T;, are commercially
available routinely, but [!3'I]T4 and ['3'I]T; can now
be obtained by special order, and the !23I-labeled hor-
mones are under development. All of these must be
processed for chemical purity, sterility, and freedom
from pyrogens before parenteral administration to
human subjects.

Since the primary metabolic disposal route for both
T4 and T; is deiodination, which converts the radioio-
dine to its iodine form, the radiation dosimetry of these
compounds is complicated by thyroidal iodine metabo-
lism. Calculation of the needed “uc-hour” integrals for
application of the MIRD “S” tables (/) require a simu-
lation model incorporating the known physiology of
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both the hormone to be studied and of iodide. The
hormones are secreted in the bile, so their intestinal
residence must also be accounted for; when they are
given orally this is a major pathway. When the physiol-
ogy is not in steady-state, as after a single blocking dose
of stable iodine, which disappears before the hormone is
fully metabolized, the simulation must include these
changes. This paper presents the results of such a
simulation.

MATERIALS AND METHODS

The physiologic model used is presented in Fig. 1.
The parameters shown are those assumed in the case of
T4 administration to a subject with an unblocked
thyroid and 15% radioactive iodine uptake (RAIU).

The parameters of this model were taken primarily
from previous work in this laboratory (2,3). Thyroidal
release of radioiodinated hormone was adopted from
the MIRD Dose Estimate Report for the radioiodines
(4). Because this recirculation has a very small influ-
ence on dosimetry, we simplified the model by having

The Journal of Nuclear Medicine



Oral dose
of labeled T4

dose

Décay

16.7/d
/, STOMACH
c',?_g}[, IODIDE
CONTENTS
Decay

Decay

BLADDER

CONTENTS

8.3/d

all thyroidal release into the hormone pool of interest.
Excretion pathways are assumed to be 83% through
deiodination and subsequent renal excretion, and 17%
through biliary excretion of hormone conjugates (5).
These ratios are reflected in partition of the exit from
the exchangeable hormone pool into the intestinal hor-
mone pool and into the serum iodide pool. Because
reabsorption of hormone after biliary excretion as con-
jugates is quantitatively small, the model was simpli-
fied by omitting this reabsorption. On the other hand,
after oral administration of the thyroid hormones, ab-
sorption varies in efficiency and must be taken into
account. In this study, orally administered hormones
are treated by partition into absorbed and unabsorbed
fractions. The absorbed fraction is entered into the
model as an intravenous injection; the unabsorbed frac-
tion is shown in simple transit through the gastrointesti-
nal tract. When the absorption fraction is unknown,
70% absorption of T4 (6) and 90% absorption of T3 (7)
are reasonable estimates to use for subjects with normal
gastrointestinal function.

Asiodide secretion into the stomach is comparable to
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of labeled T4

Intravenous

FIGURE 1

Simplified model used for dose calcu-
lations in this paper. In the figure,
those compartments in which radioio-
dine is in iodide form are unshaded.
Those compartments containing label
in hormone form are shaded. Param-
eters shown are for T,, with 156%
RAIU, and the faster of the two iodide
turnover rates studied. Same model
structure, with parameter changes,
applies for T3. For the unabsorbed
fraction of the dose after oral adminis-
tration, the input function is into stom-
ach; for i.v. dose or the absorbed por-
tion of oral dose, input is into
exchangeable pool

its appearance in the urine (3), these were set equal,
again to simplify the model calculations. The rate for
stomach emptying of either iodide or hormone is as-
sumed to be 8.3 /day. Since iodide is promptly absorbed
after entering the small intestine (3), the process is
simplified by showing the iodide transport directly from
the stomach to the circulating iodide pool at the rate of
stomach emptying (8.3/day). True gastric iodide ab-
sorption, probably negligible (3), is ignored. Values for
transport within the gastrointestinal tract were esti-
mated after consultation with a gastroenterologist,
based on clinical observations. They are obviously
subject to major variations among individuals and in
different clinical settings.

Because of the rapid equilibration of liver and kidney
with the circulating hormone pools, the simulation
model incorporates them within a single large ex-
changeable compartment, and biliary excretion is ob-
tained from it. The fractions of the exchangeable hor-
mone pools assumed for liver and kidneys were
calculated by assuming that all of the “fast” T4 or T3
distribution compartment (2), including the fraction of
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the “instantaneous’ compartment for T that is excess
over that for T4 and albumin, is contained in the liver
and kidneys. Partition between liver and kidneys of this
fast compartment was based on organ size (I). The
fractions of the exchangeable hormone pool used in the
model solution, for T4 and Tj, respectively, were 0.395
and 0.210 for liver and 0.0622 and 0.0331 for the two
kidneys.

In addition to the distinct differences incorporated
in partition of the exchangeable hormone compart-
ment between T4 and T3, the only other difference
was in hormone disappearance rate, the sum of deiodin-
ation, and of biliary secretion. For T, this value was
taken as 0.139/day; for Ts, as 0.934/day (2). The
figure used for Tj incorporates the slight retarding
effects of iodoprotein appearance on overall T; radioio-
dine disappearance.

As is customary in studies of thyroid hormone kinet-
ics, parameters of the model are presented as fractions
per day. Results were then converted to hourly rates, to
conform with the S table method.

This model was used to generate time-activity curves
for each of its compartments under the various condi-
tions studied. Modeling was done using the SAAM 27
program (8), in its interactive version, Consam (9),ona
VAX 11 computer. Simulations were carried out until
the integrals of the respective compartments had been
stable within 0.1% for a double-time period (e.g., the
120 and 240 day integrals were within 0.1% of each
other). The integrated activities for the organs simulat-
ed by the model were then multiplied by the values for
rads/uc-hr in the relevant S tables (/) and summed.

In preparing the S tables for use in these calculations,
it was necessary to project the influence of those organs
and tissues not modeled directly. These “Other Tis-
sues” are widely distributed tissues. They are more
inclusive than the “Other Tissues” of the S tables (pri-
marily bone) and less inclusive than the S table “Whole
Body”. Hence S values assumed for “Other Tissues” in
these calculations were interpolated linearly, by pro-
portional weights of the organs not specifically ac-
counted for, between the S tables for “Other Tissues”
and for “Whole Body”. Values assumed were for 123,
1241 1251 and 13!, respectively. For bladder wall as
target organ, the values were 3.1, 18.0, 1.3, and 8.4
rads/uc hr X 10-6. For organ stomach wall as target,
the values were 2.8, 16.0, 1.2 and 7.9; for small intesti-
nal wall, 3.1, 18.0, 1.3, and 8.1; for right colonic wall,
3.0, 18.0, 1.3, and 8.2; for left colonic wall, 3.0, 19.0,
1.3, and 8.3; for kidneys, 2.7, 16.0, 1.3, and 7.9; for liver,
2.6, 14.0, 1.2, and 7.5; for red bone marrow, 3.7, 16.0,
2.0, and 8.0; for ovaries, 3.3, 19.0, 1.4, and 8.6; for
testes, 2.2, 16.0, 1.0, and 7.1; for thyroid, 2.4, 15.0, 1.3,
and 7.1, and for total body, 3.0, 18.0, 1.6, and 9.9 rads/
uc hr X 10-6.

The simulation of the results of blocking doses of 500
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mg iodide (from the usual ten drops of SSKI) was based
upon the assumptions that a daily dose containing 10
mg iodine or more will block uptake (10), but that
thereafter the trap is partially suppressed (1/1), and
gradually recovers. One week of 50% suppression was
used to model this partial suppression. To determine the
circulating iodine remaining after a single 500 mg dose
as elemental iodide, we ran the model with this dose as
input into the iodide compartment. This simulation
showed that the 10 mg level was reached at ~1.4 days.
Therefore, we can no longer assume complete blockage
after 2 days. On the other hand, when we ran the
simulation with iodine turnover reduced to 0.5/day,
which may be more typical of iodine deprivation (12),
the results suggested complete blockade for 9 days.

Three conditions of iodine blockade were then stud-
ied, all for an iodine block in a person whose usual
RAIU is 15%:

a. SSKI # 1: RAIU 0% for 2 days, 7 2% for 7 days,
then back to 15%. This condition models a single dose of
10 drops SSKI in a person with normal iodide turnover
of 2.8 /day.

b. SSKI #2: RAIU 0% for 9 days, 7 ',% for 7 days,
then back to 15%. This condition models 1 wk of block-
ade, ten drops of SSKI given every second day, in
subjects who have normal iodide turnover. It also mod-
els a single dose in a person with iodide turnover re-
duced to 0.5%/day.

c. SSKI #3:RAIU 0% for 16 days, 7/,% for 7 days,
then back to 15%. This condition models 2 wk of SSKI
with normal iodide turnover or 1 wk when reduced.

To calculate dose from the unabsorbed portion of
radioiodinated substances given orally, the model was
run with the radioactivity input into the stomach. As no
absorption with subsequent recirculation is assumed
here, the results are identical for any nonabsorbed,
nonmetabolized oral radioiodinated material. In the
case of oral thyroid hormones that are partially ab-
sorbed, the absorbed portion is introduced into the
exchangeable hormone pool of the model.

RESULTS

Dose calculations resulting from application of this
model to the MIRD S Tables, for i.v. radioiodinated T,
and T, in rad/mc, are presented in Table 1. The inte-
grated simulated activities (as uc-hr each uc adminis-
tered), on which these calculations were based, for the
various organ systems and conditions modeled can be
obtained from the author on request.

Illustrative time-activity curves, demonstrating the
effects of the various conditions modeled, all for a
normal person with RAIU of 15%, are presented in
Figs. 2 and 3. Figure 2 shows that, compared with T,,
there is relatively rapid disappearance from the circu-
lating pool of T, with a more rapid appearance of label
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Time-activity curve for exchangeable pools of 125l-T, and
12517, and for thyroidal content of 12%| after administration of
each

in the thyroid. On the other hand, by 16 days after
administration of ['251] T, or ['25I] T3, the thyroidal 251
level is the same.

Figure 3 demonstrates the effects of an iodine block
on thyroidal radioiodine activity for the !3!I and !25]
labeled hormones, respectively. One can see from this
figure that the impact of a single blocking dose of iodine
(SSKI # 1) is more dramatic for !3'I than for 12°I and
for T3 than for T,. After [125I]T, injection, by 3 wk,
even a week of iodine block results in thyroidal 1251
levels higher than after ['25I]T; with a single blocking
dose.

The unabsorbed portion of an oral administration of
T,4* or T5* primarily irradiates the GI tract and ovaries.
Radiation absorbed dose after an oral administration of
1231 1241 125] or 131], which is retained in the GI tract is,
respectively, stomach wall, 0.33, 1.84, 0.16, and 1.06
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FIGURE 3

TABLE 2
Maximum Amounts of Radioiodinated Hormones in uc,
Given 10, for 5 rad Limit

ltem No Block SSKI#1 SSKI#2 SSKI#3
Radioiodinated T,

123) 7,680 8,930° — —

124 25 40 100 329°*

125) 14 18 32 91

18y 13 18 38 180
Radioiodinated T3

123) 1,114 15,625 — _

124 14 49 452 4841

125 14 42 306 2,7171

187 8 28 232 4791

Note: The amount radioiodinated hormones that have been studied
which can be administered within the limits of 5 rad to any organ
under the various conditions of RAIU block studied. Except where
indicated by footnote, the dose-limiting organ is the thyroid.

* Critical organ is the liver.

t Critical organ is the right colonic wall.

rads/mc; small intestinal wall, 1.14, 5.38, 0.65, and
2.59; right colonic wall, 3.82, 22.46, 2.71, and 18.16;
left colonic wall, 12.31, 67.16, 10.70, and 65.08; liver,
0.07,0.41,0.01, and 0.16; red bone marrow, 0.37, 1.08,
0.22, and 0.49; ovaries, 1.44, 5.51, 0.81, and 2.49;
testes, 0.09, 0.54, 0.02, and 0.24; thyroid, 0.00, 0.01,
0.00, and 0.00; and total body, 0.19,0.92,0.10, and 0.49
rads/mc. To use these values in calculating absorbed
radiation from an oral dose, it is necessary to project the
fraction absorbed. The dose is then split, the unab-
sorbed fraction calculated from these figures and the
absorbed fraction calculated in the same way as an
intravenous dose. Absorption of these hormones is rap-
id after gastric emptying, so the error introduced by this
approach, which assumes immediate absorption, is
small.
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Effect of iodine block on thyroidal time-activity curve after T, and T3 labeled with (left) 251 and (right) *3'|
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DISCUSSION

Permissible limits for human administration of these
radioiodinated hormones in a research setting are set at
our institution based on occupational exposure limits.
They are limited by a critical organ dose of 5 rad for a
single administration or by an annual cumulative dose
from repeat studies of 15 rad. Whole body dose, as well
as that to the gonads, is limited to 3 rad, 5 rad cumula-
tive. The maximum permissible single dose of the var-
ious radioiodinated hormones, with the dose-limiting
organs, under the different circumstances simulated,
are presented in Table 2. Obviously, if multiple radion-
uclides are administered, as with 23] containing !24I or
125, or in double or triple isotope kinetic studies, the
amounts of each substance given must be adjusted to
keep the total rad dose below permissible maxima.

While the shapes of the time-activity curves for the
various T4’s and T3’s vary, it is possible to derive overall
effective half-lives directly from the integrated values
used in these calculations. Figure 4 shows that the
overall T of the circulating hormone pool, which is
minimally affected by iodine blockade, is nevertheless
closely related to the sensitivity of thyroidal radiation to
the various degrees of iodine block studied.

Volume 26 e Number 9 ¢ September 1985

Estimation of the total uc-hr figures from physiolog-
ic studies continues to be the aspect of radionuclide
radiation dosimetry calculations most subject to fluctu-
ation and inaccuracy. Often, physiologic parameters
are expressed as multiexponential equations empirical-
ly derived to fit observed or simulated time-activity
curves. This approach does not allow for changes in
biologic activity such as that produced by iodine block-
ade. In addition, the coefficients of a multiexponential
equation seldom have intuitive meaning to the clinician.
Now that Consam and similar modeling techniques
have become widely accessible, it is practical to work
directly with, and to vary, the physiologic parameters of
interest. Physical decay simply becomes an added mod-
el parameter, to be manipulated at will. This study is an
example of such explorations, examining the impacts of
variations in RAIU and of iodide turnover on radiation
effects from the radioiodinated thyroid hormones. We
are now applying the results to the design of upcoming
human studies.
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