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The recent clinical success of cancer immunotherapy has renewed

interest in the development of tools to image the immune system. In
general, immunotherapies attempt to enable the body’s own im-

mune cells to seek out and destroy malignant disease. Molecular

imaging of the cells and molecules that regulate immunity could

provide unique insight into the mechanisms of action, and failure,
of immunotherapies. In this article, we will provide a comprehensive

overview of the current state-of-the-art immunoimaging toolbox

with a focus on imaging strategies and their applications toward

immunotherapy.
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The recent clinical success of cancer immunotherapy has re-
newed interest in the development of tools to image the immune
system. In general, immunotherapies attempt to enable the body’s
own immune cells to seek out and destroy malignant disease.
Molecular imaging of the cells and molecules that regulate immu-
nity could provide unique insight into the mechanisms of action,
and failure, of immunotherapies. In this review, we will collec-
tively refer to the tools applied toward imaging the immune sys-
tem as the immunoimaging toolbox. The immunoimaging toolbox
comprises imaging hardware, software, and biologic wetware that
together enable dynamic and noninvasive visualization of immune
response. Other recent reviews have focused on specific portions
of the immunoimaging toolbox, including advances in imaging
hardware (1) and certain classes of imaging probes (2,3). Here,
we will attempt to provide a comprehensive overview of the cur-
rent state-of-the-art immunoimaging toolbox with a focus on im-
aging strategies and their applications toward immunotherapy.
However, despite our comprehensive intent, there are many appli-
cations that cannot be discussed here because of space limitations.
We searched the PubMed database for articles using the terms

immune imaging, imaging immunotherapy, and cell tracking. We
considered all English-language articles published since 1990

until the date this paper was submitted for publication, but articles
published over the past 5–10 y were given priority.

IMMUNOIMAGING STRATEGIES

The immunoimaging toolbox has rapidly expanded over the last
decade because of a shift in focus from imaging cancer and
specific diseases to imaging a patient’s underlying immune state.
This paradigm shift has been driven in part by the failure of
conventional imaging methods to accurately monitor and predict
response to clinical immunotherapies. Because the success of im-
munotherapy is dependent on the generation of a robust immune
response, immunoimaging tools are of high interest. Tables 1 and
2 summarize the current status of the immunoimaging toolbox by
providing a comprehensive list of agents that have been used to
image the immune system. The tables divide the immunoimaging
toolbox into two strategic classes: probes targeted to endogenous
immune cell biomarkers (Table 1) and direct and indirect ap-
proaches to immune cell labeling strategies (Table 2). Here, we
discuss the implementation of each strategy toward imaging im-
mune cells and molecules (Fig. 1).

Probes Targeted to Endogenous Immune Cell Biomarkers

This approach seeks to develop molecular imaging agents that
bind to, or are selectively taken up by, endogenous immune
molecules or immune cells, respectively. There are a wide variety
of immune targets to choose from, many of which have been
categorized by immunologists as cluster-of-differentiation (CD)
markers. The expression of CD markers is spatially and tempo-
rally heterogeneous, and together, these markers define an immune
cell phenotype. CD markers can be used to identify anything from
general immune cell classes (e.g., CD3-positive T cells) to specific
cell subsets (e.g., CD3-positive, CD4-positive, FoxP3-positive
regulatory T cells) and immune cell states (e.g., CD3-positive,
CD4-positive, CD25-positive, CD279-high, FOXP3-positive acti-
vated regulatory T cells). In addition to these CD markers, certain
metabolic pathways are also selectively upregulated in immune
cells. For example, both deoxyguanosine kinase and deoxycyti-
dine kinase, implicated in nucleoside salvage pathways, have been
identified as being highly upregulated in activated, as compared
with resting, T cells. The identification and selection of immune
biomarkers is an active and important area of research. Because of
the natural presence of these immune markers, probes targeted for
endogenous immune cell biomarkers provide a relatively straight-
forward immunoimaging approach.
Endogenous biomarker–targeting probes can be built from an-

tibodies and other natural protein scaffolds, as well as developed
de novo from chemical or protein engineering techniques. Large
libraries of potential binders are often generated and screened
against an immune target of interest. Because of the challenges
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of developing small-molecule chemical libraries, biologics (anti-
bodies or their derivatives) have become a favorite option for
imaging the immune system. Often, antibodies already under de-
velopment for immunotherapeutic applications can quickly be
modified for imaging via conjugation to a contrast agent or radio-
nuclide. Another benefit of antibodies as imaging agents is their
naturally high specificity and binding affinity toward their cognate
antigen. Drawbacks to antibody imaging include their large size
(;150 kDa), leading to slow clearance from nontarget tissues and
relatively poor penetration into target tissues. When imaging with
antibodies, a clinician must often wait several days before the
background signal from unbound probe has cleared from various
tissues and the circulation. To overcome these challenges, alterna-
tive biologic scaffolds are being developed and optimized for
improved pharmacokinetics. Engineered antibody fragments such
as minibodies, diabodies, and scFv fragments (4), and antibodies
from other species such as camelid and shark, are all actively
being explored (5). Endogenous ligands can be affinity-matured
and modified to be used as probes (6), and aptamers, adnectins,
and cystine knots add to a growing list of scaffolds that are being
developed and applied toward immunoimaging. With all these
potential scaffolds to choose from, one must weigh the trade-offs
between specificity, sensitivity, and clearance. Mounting empiric
data from preclinical studies and from mathematic models (7)
should help identify the ideal scaffold choices for immunoimaging
applications in the clinic.

Immune Cell Labeling Strategies

Direct labeling of immune cells ex vivo that have first been
isolated from a patient is another commonly used immunoimaging
technique. In this method, immune cells are incubated ex vivo
with an imaging agent before being adoptively transferred back
into the patient. The immune cells can then be tracked longitu-
dinally by imaging over time. A wide range of immune cells has
been monitored in this manner, including T cells, B cells, natural
killer cells, dendritic cells, macrophage, monocytes, and hemato-
poietic stem cells. Although this strategy enables simple and
specific labeling of almost any chosen immune cell of interest, it
has several drawbacks. Many contrast agents used in this manner
have a direct impact on cell function. For example, both indium
oxine and ferumoxytol used for tracking cells via PET or MRI,
respectively, are known to cause cell cytotoxicity at too high a
concentration. Furthermore, once they are successfully labeled,
there is a loss in sensitivity over time due to efflux or dilution of
the probe during cell division. In clinical practice, this phenom-
enon limits the time that cells can be monitored to hours or weeks

after adoptive transfer. Finally, once the cells have been trans-
ferred back into the patient, it is impossible to tell whether the
immune cells are viable (a dead cell will still lead to signal with
this technique), further confounding the interpretation of response.
Nonetheless, direct labeling is an important imaging technique
that has provided valuable insight into immune cell reconstitution
and cell homing to sites of disease or damage.
Indirect labeling approaches overcome many of the challenges

associated with direct labeling. This labeling strategy involves
either viral transduction or transfection of a reporter gene into an
immune cell of interest. A reporter gene can be anything from a
luciferase (e.g., the enzyme used by fireflies to create their
characteristic bioluminescent glow) to viral genes that code for
enzymes not commonly found in the human body. A successful
example has been herpes simplex virus type 1 thymidine kinase,
which can subsequently be visualized using a reporter probe that is
trapped by only cells expressing that reporter gene. Furthermore,
reporter genes can be put downstream from promoters that turn on
the expression of the gene only if an immune cell is activated. In
this way, reporter gene strategies can reveal immune cell locations,
viability, and activation state. Reporter genes have been developed
for use with multiple imaging modalities, including MRI, PET,
and optical imaging (8). Although indirect labeling techniques can
theoretically be performed in vivo, challenges with specificity and
concerns about viral gene editing in humans have limited their
primary application to ex vivo immune cell manipulation. As with
direct labeling techniques, it is critical to assess whether the in-
troduction of the reporter gene is affecting the viability or function
of the immune cell itself. Other issues with using viruses or trans-
fection techniques, including challenges with stable expression
and gene transcription ‘‘leakiness,’’ as well as the need to remove
cells from a patient, have partially limited the applications of this
technique thus far. That said, as the safety and efficacy of certain
viruses improve, we may see more widespread clinical adoption of
this imaging technique due to the ability to image immune cells
for their entire life span.

IMMUNOIMAGING APPLICATIONS TOWARD

IMMUNOTHERAPY

The immunoimaging strategies discussed above are rapidly
being deployed in an attempt to predict and monitor response to
immunotherapy. In this section, we will review several classes of
immunotherapy (Fig. 2) and provide examples of how immuno-
imaging is already being applied to better understand and charac-
terize immune response (Fig. 3).

Immune Checkpoint Blockade

Immune checkpoint blockade has emerged as a promising
immunotherapeutic treatment strategy for several malignancies.
Under normal physiologic conditions, so-called immune check-
points help prevent the immune system from erroneously attacking
healthy tissues. Unfortunately, cancers have evolved to upregulate
immune checkpoint molecules to evade immune detection and
destruction. By obstructing these immunosuppressive signaling
pathways with therapeutic drugs, immune checkpoint blockade
strategies enable the formation of an optimal therapeutic antitumor
immune response. Immune checkpoint blockade has led to
unprecedented clinical success in patients with late-stage mela-
noma, non–small cell lung cancer, and bladder cancer. Numerous
clinical trials are under way, and the Food and Drug Administration
has already approved drugs targeting several immune checkpoint

NOTEWORTHY

n The immunoimaging toolbox is rapidly expanding and pro-
viding novel insight into the immune system and immune
responses to therapy.

n Tables 1 and 2 provide a comprehensive overview of the
current state-of-the-art immunoimaging toolbox.

n Clinical roles for the immunoimaging toolbox include
guiding the rationale for drug development, informing op-
timal treatment strategies, improving patient stratification
and trial design, providing early clinical response predic-
tion, and monitoring therapeutic outcomes for better pa-
tient management.
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TABLE 1
Probes Targeted to Endogenous Immune Cell Biomarkers

Target Agent Class Reactivity Modality Stage Study

PD-L1 18F-BMS-986192 Adnectin Human/cynomolgus PET Preclinical (20)

18F-NOTA-ZPDL1_1 Affibody Human/macaque PET Preclinical (21)

64Cu-DOTA-HAC-PD1, 64Cu-NOTA-HAC-PD1,
64Cu-NOTA-HACA-PD1, 68Ga-NOTA-HAC-PD1,
68Ga-NOTA-HACA-PD1, 68Ga-DOTA-HACA-PD1

HAC-PD1 Human PET Preclinical (6,22)

111In-atezolizumab, NIR-atezolizumab,
64Cu-atezolizumab, 89Zr-atezolizumab

Humanized IgG1 Human SPECT, PET, optical Clinical (23,24)

89Zr-C4 Humanized IgG1 Human/murine PET Preclinical (25)

111In-PD-L1.3.1 Murine IgG1 Human SPECT Preclinical (10)

111In-DTPA-anti-PDL1 mAb Murine SPECT Preclinical (26,27)

89Zr-DFO-anti-PDL1 mAb Murine PET Preclinical (28)

aPDL1-GNPs Nanoparticle Murine CT Preclinical (29)

99mTc-Nbs Single-domain antibody Murine SPECT Preclinical (30)

64Cu-WL12 Peptide Human PET Preclinical (31)

64Cu-NOTA-PD-L1 mAb Murine PET Preclinical (32)

18F-B3, 64Cu-B3 Camelid VHH Murine PET Preclinical (33)

PD-1 89Zr-Df-pembrolizumab Humanized IgG4 Human PET Preclinical (34)

89Zr-Df-nivolumab Humanized IgG4 Human PET Preclinical (35)

89Zr-keytruda Humanized IgG4 Human PET Preclinical (36)

PD-1-liposome-DOX-64Cu/IRDye800CW Rat IgG2a Murine NIRF/PET Preclinical (37)

64Cu-NOTA-PD-1 mAb Murine PET Preclinical (32)

64Cu-DOTA-anti-PD-1 mAb Murine PET Preclinical (38)

TCR 89Zr-Df-aTCRmu-F(ab′)2 Fab′2 Human PET Preclinical (39,40)

64Cu-DOTA-KJ1-26 mAb Murine PET Preclinical (41)

MHCI/II 18F-VHH7, 18F-VHHDC13 Camelid VHH Murine PET Preclinical (42)

64Cu-VHH4 Camelid VHH Human PET Preclinical (43)

Granz B 68Ga-NOTA-GZP Peptide Murine PET Preclinical (44)

CTLA-4 64Cu-DOTA-anti-CTLA-4 mAb Murine PET Preclinical (44,57)

64Cu-DOTA-ipilimumab mAb Human PET Preclinical (46)

CD8 89Zr-VHH-X18 Camelid VHH Murine PET Preclinical (11)

89Zr-malDFO-169cDb Cys-diabody Murine PET Preclinical (47)

64Cu-NOTA-2.43Mb Minibody Murine PET Preclinical (48)

89Zr-Df-IAB22M2C Minibody Human PET Clinical (48)

CD4 89Zr-malDFO-GK1.5cDb Cys-diabody Murine PET Preclinical (50,51)

CD3 89Zr-DFO-CD3 mAb Murine PET Preclinical (52)

CD25 18F-FB-IL2 Wt IL2 Murine PET Preclinical (53)

99mTc-IL2 Wt IL2 Human SPECT Clinical (54)

CD20 124I-anti-CD20 scFv dimers Diabody Human PET Preclinical (55)

64Cu-rituximab mAb Human PET Preclinical (17)

124I-GAcDb, 124I-GAcMb, 89Zr-GAcDb, 89Zr-GAcMb Cys-diabody, Cys-minibody Human PET Preclinical (56)

64Cu-FN3CD20 Fibronectin (FNIII) Human PET Preclinical (57)

89Zr-Df-Bz-rituximab mAb Human PET Preclinical (58,59)

89Zr-anti-B220 mAb Murine PET Preclinical (60)

124I-scFV-Fc DM, 124I-Mb, 64Cu-DOTA-Mb Minibody, scFv Human PET Preclinical (61)

dCK 18F-FAC, 18F-CFA Small molecule Murine/human PET Clinical (62,63)

dGK 18F-AraG Small molecule Murine/human PET Clinical (16,64)

TK1 18F-FLT Small molecule Murine/human PET Clinical (65)

CD47 89Zr-anti-CD47-mAb mAb Murine/human PET Preclinical (66)

CD276 Anti-B7H3-microbubbles Microbubble Human Ultrasound Preclinical (67)

CXCR4 64Cu-AMD3100 mAb Human PET Preclinical (68)

MMR 18F-SFB Single-domain antibody Murine PET Clinical (69)

OX40 64Cu-DOTA-OX40 mAb Murine PET Preclinical (70,71)

Common acronyms for modalities: FLI 5 fluorescence imaging; BLI 5 bioluminescence imaging; NIRF 5 near-infrared fluorescence imaging.

Common acronyms for agents: HAC 5 high-affinity consensus; GNPs 5 gold nanoparticles; Mb 5 minibody; Nbs 5 single-domain antibodies; cDb 5 cys-diabody; mAB 5

monoclonal antibody; scFv 5 single-chain variable fragment; SPION 5 superparamagnetic iron oxide nanoparticle; CLIO 5 cross-linked iron oxide; GFP 5 green fluorescent protein;

FLuc 5 firefly luciferase; NP 5 nanoparticle; FAC 5 fluoroarabinofuranosyl-cytosine; AraG 5 fluoroarabinofuranosyl-cytosine; dCK 5 deoxycytidine kinase; dGK 5 deoxyguanosine

kinase; TK1 5 thymidine kinase 1; FLT 5 fluorothymidine; FHBG 5 fluoro-3-hydroxymethylbutyl guanine; NIS 5 sodium iodide symporter.
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TABLE 2
Immune Cell Labeling Strategies

Target Agent Class Reactivity Modality Stage Study

T cells 64Cu-PTSM Small molecule Murine/human PET Preclinical (72)

18F-FDG Small molecule Murine/human PET Preclinical (72)

99mTc-MHPAO Small molecule Murine/human SPECT Preclinical (72)

111In-oxine Small molecule Murine/human SPECT Preclinical (73)

CLIO-HD Nanoparticle Murine/human MRI Preclinical (74)

124I-FIAU Reporter gene Murine/human PET Clinical (75)

18F-FHBG Reporter gene Murine/human PET Clinical (13)

IOPC-NH2 Nanoparticle Murine/human MRI Preclinical (76)

PFPE/19F Nanoparticle Murine/human MRI Clinical (77)

64Cu-SPION Nanoparticle Murine/human PET Preclinical (78)

DiR fluorophore Small molecule Murine/human FLI Preclinical (79)

HSVI-sr39tk, HSV-tk,

HSV-tk-GFP

Reporter gene Murine/human PET/optical Clinical (80)

Fluc Reporter gene Murine/human BLI Preclinical (81,82)

Sr39tk/18F-FHBG Reporter gene Murine/human PET Preclinical (83)

18F-FEAU Reporter gene Murine/human PET Preclinical (84)

B cells NIR nanoparticle Nanoparticle Murine/human FLI Preclinical (85)

Monocytes 18F-FDG Small molecule Murine/human PET Clinical (6)

Macrophage NIR nanoparticle Nanoparticle Murine/human FLI Preclinical (87)

Ferumoxytol SPIO Nanoparticle Murine/human MRI Clinical (88,89)

Magnetic NP Nanoparticle Murine/human MRI Clinical (87)

Ferucarbotran Nanoparticle Murine/human MRI Clinical (discontinued) (90)

Ferumoxtran Nanoparticle Murine/human MRI Clinical (discontinued) (91)

CLIO Nanoparticle Murine/human MRI Preclinical (92)

89Zr/64Cu/18F-DNP Nanoparticle Murine PET Preclinical (93)

Fluc Reporter gene Murine/human BLI Preclinical (94,95)

NIS/124I Reporter gene Murine/human PET Clinical (94,96)

Dendritic cells 111In/99mTc-HMPAO Small molecule Murine/human SPECT Clinical (97)

111In Small molecule Murine/human SPECT Clinical (98)

19F-PFPE loaded with iron

particles

Nanoparticle Murine/human MRI Preclinical (99)

SPIO Nanoparticle Murine/human MRI Clinical (100)

NIR-QD Quantum dot Murine/human FLI Preclinical (101)

18F-SFB Small molecule Murine/human PET Clinical (102)

Ferumoxide Nanoparticle Murine/human MRI Clinical (15)

Perfluorocarbon NP Nanoparticle Murine/human MRI Clinical (103)

CFSE Small molecule Murine/human FLI Preclinical (104)

Fluc Reporter gene Murine/human BLI Preclinical (105)

hNIS/124I Reporter gene Murine/human PET Clinical (105)

FTH Reporter gene Murine/human MRI Clinical (106)

GFP Reporter gene Murine/human FLI Preclinical (107)

NK cells Ferumoxides, ferucarbon Nanoparticle Murine/human MRI Preclinical (108)

NIR dye Small molecule Murine/human FLI Preclinical (109)

11C Small molecule Murine/human PET Clinical (110)

111In Small molecule Murine/human SPECT Clinical (111)

Common acronyms for modalities: FLI 5 fluorescence imaging; BLI 5 bioluminescence imaging; NIRF 5 near-infrared fluorescence imaging.

Common acronyms for agents: HAC 5 high-affinity consensus; GNPs 5 gold nanoparticles; Mb 5 minibody; Nbs 5 single-domain antibodies; cDb 5
cys-diabody; mAB 5 monoclonal antibody; scFv 5 single-chain variable fragment; SPION 5 superparamagnetic iron oxide nanoparticle; CLIO 5 cross-

linked iron oxide; GFP 5 green fluorescent protein; FLuc 5 firefly luciferase; NP 5 nanoparticle; FAC 5 fluoroarabinofuranosyl-cytosine; AraG 5 fluoroar-

abinofuranosyl-cytosine; dCK 5 deoxycytidine kinase; dGK 5 deoxyguanosine kinase; TK1 5 thymidine kinase 1; FLT 5 fluorothymidine; FHBG 5 fluoro-3-

hydroxymethylbutyl guanine; NIS 5 sodium iodide symporter.
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molecules: cytotoxic T-lymphocyte antigen-4 (CTLA-4), pro-
grammed death-1 (PD-1), and programmed death ligand-1 (PD-L1)
(9). Despite the success of immune checkpoint blockade, only a
subset of patients responds.
Several tools are being developed in hopes of predicting

which patients are most likely to respond to immune checkpoint
blockade therapy. Probes targeting endogenous immune cell
biomarkers are particularly well suited for measuring the dynamic
and heterogeneous expression of immune checkpoint molecules.
Numerous imaging agents have been developed and applied in an
attempt to noninvasively interrogate PD-1, PD-L1, and CTLA-4
expression. For example, Heskamp et al. demonstrated the
successful development of a monoclonal antibody labeled with
111In for SPECT/CT imaging of human PD-L1 expression in mice
(10). Their mouse images showed heterogeneous uptake that cor-
related well with PD-L1 expression in multiple types of human
tumor xenografts. They concluded that the technique may enable
better patient selection for future therapy targeted at PD-1 and
PD-L1. In addition to the expression of immune checkpoint mole-
cules, the presence of immune cells before or after immune check-
point blockade therapy may correlate with therapeutic response.

Rashidian et al. showed that 89Zr-labeled PEGylated single-do-
main antibody fragments (VHHs [the variable region of a heavy
chain of a camelid antibody]) specific for CD8 enable immuno-
PET tracking of cytotoxic T cells (11). Although the absolute

FIGURE 1. The 3 primary immunoimaging strategies. (A) Imaging

probe targeting natural immune cell receptor is injected. (B) Cells from

patient are transduced with reporter gene, reinjected, and visualized via

injection of reporter probe. (C) Cells from patient are incubated ex vivo

with imaging probe, and labeled cells are injected into patient and mon-

itored via imaging. (Adapted from Kurtz et al. (112).)

FIGURE 2. The 3 important classes of cancer immunotherapy. (A) Im-

mune checkpoints that regulate antitumor immunity have now been

identified as promising therapeutic targets. Blocking of signaling path-

ways that suppress antitumor immune response has proven especially

effective. In one approach, anti-PD-1 mAb targets PD-1 receptor on T

cells, blocking ligation of receptor and immunosuppression by PD-L1 on

tumor cells. Anti-PD1 mAb administration thus leads to immune activa-

tion and therapeutic response. Imaging of PD1 expression with radiola-

beled mAb may assist in selection of patients for treatment, optimal

dosing, and response monitoring. (B) CAR-T strategies engineer pa-

tient’s immune cells ex vivo to express receptor that can bind specifi-

cally to tumor cells. During this engineering process, reporter gene can

also be inserted to enable longitudinal tracking of CAR-Ts. On adminis-

tration, CAR-Ts seek out and destroy malignant tumor cells. Subsequent

imaging with reporter probe can give insight into their location and func-

tional status. (C) Cancer vaccine strategies come in many formulations.

In one approach, dendritic cells are pulsed with tumor antigen, lysate, or

RNA. Dendritic cells then express tumor antigens on their major-histo-

compatibility-complex molecules, which are capable of eliciting T-

cell–driven immune response. Successful responses require homing

of dendritic cells to lymph nodes and tumor. At these sites, dendritic cells

can activate tumor-specific T cells. Labeling of dendritic cells with con-

trast agent allows for assessment of successful homing of dendritic cells

to lymph nodes and other secondary lymphoid sites. This knowledge can

be used to inform both dose and route of vaccine administration.
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number of intratumoral CD8 T cells measured by PET imaging did
not correlate well with therapeutic response to CTLA-4 check-
point blockade, the distribution of T cells in the tumor did. Ho-
mogeneous uptake patterns, indicative of good T-cell penetration
and tumor coverage, stratified responders from nonresponders in
this study. It is likely that both immune checkpoint expression and
immune cell intratumoral distribution will provide valuable insight
into clinical responses to immune checkpoint blockade therapy.

Chimeric Antigen Receptor T Cells (CAR-Ts)

CAR-Ts represent a personalized therapeutic approach in which
T cells are removed from a patient and genetically engineered to
express a chimeric antigen receptor before being introduced back
into the patient. Chimeric antigen receptors have been designed to
bind a variety of tumor-associated antigens. Newer generations
of CAR-Ts have coupled these extracellular binding domains
to intracellular costimulatory moieties, improving therapeutic

potency and efficacy. Thus far, CAR-T
strategies have seen the greatest success
in treating hematologic malignancies,
whereas they have struggled to find effi-
cacy in solid tumors. In addition, CAR-T
therapies often present with severe side
effects, including cytokine release syn-
drome, neurologic toxic effects, and, in
some cases, even death (12). ‘‘On-target,
off-tumor’’ toxicity is another common
concern. For example, CAR-Ts targeting
CD19 will eradicate not only malignant
CD19-positive B cells but also normal
CD19-positive B cells, leading to B-cell
aplasia. Despite durable remissions in cer-
tain patients, approximately half will ex-
hibit relapse. The reasons for variations
in patient response are not yet well under-
stood, though they are likely linked to
CAR-T durability, antigen loss, and on-tar-
get, off-tumor effects.
Reporter gene imaging strategies lend

themselves readily to CAR-T therapy, as
the cells already need to be removed from
the patient and genetically engineered. Keu
et al. recently demonstrated reporter gene
imaging of CAR-Ts in glioblastoma pa-
tients (13,14). In this study, cytotoxic T
cells bearing the chimeric antigen receptor
interleukin-13 zetakine for interleukin-13
receptor a-positive tumor targeting were
engineered to also express HSV1-tk as a
dual-purpose suicide and imaging reporter
gene. 18F-fluoro-3-hydroxymethylbutyl
guanine PET imaging was subsequently
used to longitudinally monitor CAR-T traf-
ficking, survival, and proliferation in mul-
tiple patients with recurrent high-grade
glioma. Although this study faced many
challenges, including strict Food and Drug
Administration regulations limiting the
number of scans and access to patients, it
provides a proof of principle that reporter
gene imaging may one day be able to link

cytotoxic T-lymphocyte trafficking and viability to tumor response
and patient survival, guiding both the development and the appli-
cation of CAR therapy for the treatment of solid tumors.

Dendritic Cell Vaccines

Dendritic cell vaccines comprise a special class of immuno-
therapy in which professional antigen-presenting cells, known as
dendritic cells, are loaded ex vivo with an antigen and then
adoptively transferred back to the patient. When successful, the
antigen-loaded dendritic cells lead to the generation of an adaptive
immune response against the target antigen of interest. For these
therapies to be effective, though, the dendritic cells must migrate
through the lymphatic system to lymph nodes where they can
present the antigen and activate effector immune cells. Successful
homing to secondary lymphoid organs represents an intermediate
endpoint that might be used to improve or predict the success of
dendritic cell vaccine strategies.

FIGURE 3. Immunoimaging examples. (A–C) Imaging of PD-L1 immune checkpoint: CT using

anti-PD-L1 gold nanoparticles (adapted from Meir et al. (30)) (A); PET (B) and optical imaging (C) of

humanized antibody to assess PD-L1 expression in tumors (adapted from Chatterjee et al. (113)).

(D–F) Imaging of activated T cells: PET of OX40 expressed on activated T cells after vaccine

treatment within tumor (arrow) (adapted from Alam et al. (70,71)) (D); reporter gene imaging of

targeted T-cell immunotherapy in recurrent glioma (arrow) (adapted from Keu et al. (13)) (E); PET

of 18F-AraG to visualize activated T cells in acute graft-vs.-host disease (adapted from Ronald et al.

(16)) (F). (G–I) Imaging of myeloid cells: optical imaging revealing tumor-associated macrophage–

mediated mechanism of resistance to anti-PD1 therapy (adapted from Arlauckas et al. (114);

macrophage is in red, T cell in blue, and PD-1 in yellow) (G); MRI of dendritic cells labeled with

superparamagnetic iron oxide (adapted from de Vries et al. (15); arrow indicates site of decreased

signal in lymph node due to superparamagnetic iron oxide–labeled dendritic cell accumulation) (H);

axial composite 19F/1H MRI after intradermal dendritic cell administration into quadriceps of patient

(adapted from Ahrens et al. (103); RF 5 rectus femoris; SFA 5 superficial femoral artery) (I).
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Direct cell labeling and imaging are well suited toward elucidating
the ideal route of administration and the fate of dendritic cells after
injection. Many direct cell-labeling approaches using MRI have been
attempted for monitoring dendritic cell vaccines for immunotherapy.
MRI tracking of dendritic cells using superparamagnetic iron oxide
nanoparticles has recently been tested in the clinic. In one such study,
superparamagnetic iron oxide–labeled dendritic cells were injected
intranodally into patients bearing melanoma (15). MRI was able to
detect lymph nodes containing labeled dendritic cells with high
sensitivity and revealed several patients who had been misinjected
during therapy. In this case, it is clear how imaging might help
potentially improve therapeutic success rates in patients receiving
dendritic cell vaccines.
Applications of immunoimaging go far beyond the several

highlighted here. In the coming years, there will likely be increasing
applications of the immunoimaging toolbox toward autoimmune
diseases such as graft-versus-host disease (16) and rheumatoid ar-
thritis, as well as neurodegenerative diseases with an immune com-
ponent such as multiple sclerosis (17) and Alzheimer disease.

THE EXPANDING ROLES FOR IMMUNOIMAGING

For immunotherapies to succeed, they must make it from the
bench to the bedside, with the lessons learned being brought back to
the bench. The standard drug development pipeline usually consists
of target identification and assessment, lead compound optimiza-
tion, preclinical studies, clinical phases I–III, and, finally, Food and
Drug Administration approval. This pipeline represents an approx-
imately 15-y effort costing hundreds of millions of dollars, with 1 in
10,000 compounds ultimately achieving success (18).
Immunoimaging has several roles to play in the immunotherapy

drug development pipeline and might help streamline clinical
translation of immunotherapy strategies. During preclinical as-
sessment of cancer immunotherapies, imaging can help guide
rational therapy optimization. Compared with many preclinical
drug studies in which survival is the primary endpoint, immunoi-
maging can give specific insight into the therapeutic mechanisms
of action and failure. As we have seen in the examples provided in
this review, imaging can elucidate whether immune cells are
sufficiently homing to the disease site, whether they are activated
on arrival, and how long they viably persist. With this informa-
tion, one can tailor the treatment to overcome specific therapeu-
tic obstacles rather than taking a random combinatorial approach
toward therapeutic optimization. As drugs progress from a com-
pany’s preclinical pipeline into clinical trials, immunoimaging has
the potential to enable better patient selection and stratification
to improve trial design and, hopefully, outcomes. With the in-
crease in personalized-medicine approaches and highly targeted
therapeutics (i.e., checkpoint inhibitors), it is critical to see
whether the patient expresses the drug target before the drug is
administered. Target expression is difficult to capture using any
technique besides imaging because of highly heterogeneous ex-
pression and spatiotemporal variance. PET imaging lends itself
readily to this challenge and can even enable quantitative assess-
ment of target expression, informing not only patient and drug
selection but drug dosing as well. Finally, once a drug has received
Food and Drug Administration approval, immunoimaging can
serve as a companion diagnostic and monitoring tool for improved
patient management. Dynamic changes in immune cell response
and checkpoint expression might inform when to switch a patient
from one drug to another, or whether the patient is responding and

no longer needs to receive costly therapy. In this way, imaging will
enable physicians to make better decisions on treatment options
and patient follow-up.
For new immunoimaging techniques to be adopted and succeed

in the clinic, the field needs to move toward demonstrating the
potential utility of novel probes or biomarkers during preclinical
studies. Too often, a study concludes with simply validating an
immunoimaging probe as being specific and sensitive. Future
studies will need to show that immunoimaging agents give novel
or actionable insight into immune response and therapy. Compar-
ative analyses of immunoimaging agents being proposed for
similar purposes need to be done, and mathematic modeling
should be increasingly performed to derive guiding principles for
immunoimaging design and application. The burden still lies on
many novel imaging probes to show that they add information to
anatomic scans or the commonly used 18F-FDG PET (19). Efforts
invested in translating the most promising immunoimaging agents
need to be accelerated to keep pace with the pace of drug devel-
opment. Finally, immunoimaging should not be thought of as
a competing tool with blood-based biomarkers or ‘‘omic’’ ap-
proaches. It is our belief that true success toward understanding
and predicting response to immunotherapy will rely on the inte-
gration of the immunoimaging toolbox with both omics and sys-
tems immunology tools. Machine learning and artificial intelligence
will be necessary to make sense of the highly dimensional datasets
acquired across multiple modalities, and these systems will ulti-
mately lead to better clinical decision making and improved pa-
tient outcomes. It is clear that the immunoimaging toolbox will
continue to expand, and novel imaging strategies will likely play
an increasing role in the clinic in years to come.
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